Development of a training paradigm for voluntary control of the peri-auricular muscles: a feasibility study

Abstract Background Spinal cord injury (SCI) can lead to severe and permanent functional deficits. In humans, peri-auricular muscles (PAMs) do not serve any physiological function, though their innervation is preserved in even high level SCI. Auricular control systems provide a good example of lever...

Full description

Bibliographic Details
Main Authors: Siwaphorn Chanthaphun, Sandy L. Heck, Carolee J. Winstein, Lucinda Baker
Format: Article
Language:English
Published: BMC 2019-06-01
Series:Journal of NeuroEngineering and Rehabilitation
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12984-019-0540-x
Description
Summary:Abstract Background Spinal cord injury (SCI) can lead to severe and permanent functional deficits. In humans, peri-auricular muscles (PAMs) do not serve any physiological function, though their innervation is preserved in even high level SCI. Auricular control systems provide a good example of leveraging contemporary technologies (e.g., sEMG controlled computer games) to enable those with disabilities. Our primary objective is to develop and test the effectiveness of an auricular muscle training protocol to facilitate isolated and coordinated, bilateral voluntary control that could be used in individuals without volitional control of the vestigial PAMs. Methods Seventeen non-disabled persons were screened; 13 were eligible and 10 completed the entire protocol. The facilitation phase, included one session of sub-motor threshold, sensory electrical stimulation followed by neuromuscular electrical stimulation paired with ear movement feedback for up to 8 additional sessions. Participants progressed to the skill acquisition phase where they dawned an auricular control device that used sEMG signals to control movements of a cursor through three levels of computer games, each requiring increasingly more complex PAM coordination. Results The 10 who completed the protocol, finished the facilitation phase in 3 to 9 sessions and achieved some level of voluntary auricle movement that ranged between 1 and 5 mm. Qualitative analysis of longitudinal post-session auricular movement, revealed two subgroups of learners. Six successfully completed all 3 games—the “Learners”. Two were partially successful in game completion and two were unable to complete a single game--“Poor/Non-Learners”. Quantitative analysis revealed a significant group difference in auricular amplitude for both facilitation and skill phases (p < .05), and a significant relationship between performance in the two phases (R2 = 0.84, p = 0.004). Conclusion Sixty percent of those who completed the facilitation phase were able to learn and demonstrate functional voluntary control of the vestigial PAMs. Those who progressed the fastest through facilitation were also those who were most proficient in skill acquisition with the device. There was considerable variability in progression through the two-phase protocol, with 20% deemed Poor/Non-Learners and unable to complete even the most basic game following training. There were no serious adverse events. Trial registration ClinicalTrials.gov Identifier: NCT02358915, first posted February 9, 2015.
ISSN:1743-0003