Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing

The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibi...

Full description

Bibliographic Details
Main Authors: Miguel R. Silva, João A. Dias-de-Oliveira, António M. Pereira, Nuno M. Alves, Álvaro M. Sampaio, António J. Pontes
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/9/1500
_version_ 1797535102161387520
author Miguel R. Silva
João A. Dias-de-Oliveira
António M. Pereira
Nuno M. Alves
Álvaro M. Sampaio
António J. Pontes
author_facet Miguel R. Silva
João A. Dias-de-Oliveira
António M. Pereira
Nuno M. Alves
Álvaro M. Sampaio
António J. Pontes
author_sort Miguel R. Silva
collection DOAJ
description The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.
first_indexed 2024-03-10T11:39:30Z
format Article
id doaj.art-bb126043009b445a9181067f7f048731
institution Directory Open Access Journal
issn 2073-4360
language English
last_indexed 2024-03-10T11:39:30Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Polymers
spelling doaj.art-bb126043009b445a9181067f7f0487312023-11-21T18:37:07ZengMDPI AGPolymers2073-43602021-05-01139150010.3390/polym13091500Design of Kinematic Connectors for Microstructured Materials Produced by Additive ManufacturingMiguel R. Silva0João A. Dias-de-Oliveira1António M. Pereira2Nuno M. Alves3Álvaro M. Sampaio4António J. Pontes5CDRSP, ESTG, Polytechnic of Leiria, 2401-951 Leiria, PortugalDepartment of Mechanical Engineering, TEMA/Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, PortugalCDRSP, ESTG, Polytechnic of Leiria, 2401-951 Leiria, PortugalCDRSP, ESTG, Polytechnic of Leiria, 2401-951 Leiria, PortugalInstitute for Polymers and Composites—IPC, School of Engineering, University of Minho, 4800-058 Guimarães, PortugalInstitute for Polymers and Composites—IPC, School of Engineering, University of Minho, 4800-058 Guimarães, PortugalThe main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.https://www.mdpi.com/2073-4360/13/9/1500kinematic connectorsfunctionally graded materialsmicrostructuredadditive manufacturingtopology optimisation
spellingShingle Miguel R. Silva
João A. Dias-de-Oliveira
António M. Pereira
Nuno M. Alves
Álvaro M. Sampaio
António J. Pontes
Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing
Polymers
kinematic connectors
functionally graded materials
microstructured
additive manufacturing
topology optimisation
title Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing
title_full Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing
title_fullStr Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing
title_full_unstemmed Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing
title_short Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing
title_sort design of kinematic connectors for microstructured materials produced by additive manufacturing
topic kinematic connectors
functionally graded materials
microstructured
additive manufacturing
topology optimisation
url https://www.mdpi.com/2073-4360/13/9/1500
work_keys_str_mv AT miguelrsilva designofkinematicconnectorsformicrostructuredmaterialsproducedbyadditivemanufacturing
AT joaoadiasdeoliveira designofkinematicconnectorsformicrostructuredmaterialsproducedbyadditivemanufacturing
AT antoniompereira designofkinematicconnectorsformicrostructuredmaterialsproducedbyadditivemanufacturing
AT nunomalves designofkinematicconnectorsformicrostructuredmaterialsproducedbyadditivemanufacturing
AT alvaromsampaio designofkinematicconnectorsformicrostructuredmaterialsproducedbyadditivemanufacturing
AT antoniojpontes designofkinematicconnectorsformicrostructuredmaterialsproducedbyadditivemanufacturing