Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, however, c...

Full description

Bibliographic Details
Main Authors: Fabian Mayr, Gabriele Möller, Ulrike Garscha, Jana Fischer, Patricia Rodríguez Castaño, Silvia G. Inderbinen, Veronika Temml, Birgit Waltenberger, Stefan Schwaiger, Rolf W. Hartmann, Christian Gege, Stefan Martens, Alex Odermatt, Amit V. Pandey, Oliver Werz, Jerzy Adamski, Hermann Stuppner, Daniela Schuster
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/19/7102
_version_ 1797552574719590400
author Fabian Mayr
Gabriele Möller
Ulrike Garscha
Jana Fischer
Patricia Rodríguez Castaño
Silvia G. Inderbinen
Veronika Temml
Birgit Waltenberger
Stefan Schwaiger
Rolf W. Hartmann
Christian Gege
Stefan Martens
Alex Odermatt
Amit V. Pandey
Oliver Werz
Jerzy Adamski
Hermann Stuppner
Daniela Schuster
author_facet Fabian Mayr
Gabriele Möller
Ulrike Garscha
Jana Fischer
Patricia Rodríguez Castaño
Silvia G. Inderbinen
Veronika Temml
Birgit Waltenberger
Stefan Schwaiger
Rolf W. Hartmann
Christian Gege
Stefan Martens
Alex Odermatt
Amit V. Pandey
Oliver Werz
Jerzy Adamski
Hermann Stuppner
Daniela Schuster
author_sort Fabian Mayr
collection DOAJ
description Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)—a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.
first_indexed 2024-03-10T16:02:02Z
format Article
id doaj.art-bb23ea7804564fa790babde137dcf0e0
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-10T16:02:02Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-bb23ea7804564fa790babde137dcf0e02023-11-20T15:11:35ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672020-09-012119710210.3390/ijms21197102Finding New Molecular Targets of Familiar Natural Products Using In Silico Target PredictionFabian Mayr0Gabriele Möller1Ulrike Garscha2Jana Fischer3Patricia Rodríguez Castaño4Silvia G. Inderbinen5Veronika Temml6Birgit Waltenberger7Stefan Schwaiger8Rolf W. Hartmann9Christian Gege10Stefan Martens11Alex Odermatt12Amit V. Pandey13Oliver Werz14Jerzy Adamski15Hermann Stuppner16Daniela Schuster17Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, AustriaResearch Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, GermanyDepartment of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, GermanyDepartment of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, GermanyPediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, SwitzerlandDivision of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, SwitzerlandInstitute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, AustriaInstitute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, AustriaInstitute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, AustriaHelmholtz Institute of Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, GermanyUniversity of Heidelberg, Institute of Pharmacy and Molecular Biotechnology (IPMB), Medicinal Chemistry, Im Neuenheimer Feld 364, 69120 Heidelberg, GermanyResearch and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010 San Michele all’Adige, ItalyDivision of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, SwitzerlandPediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, SwitzerlandDepartment of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, GermanyResearch Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, GermanyInstitute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, AustriaInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, AustriaNatural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature’s treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)—a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.https://www.mdpi.com/1422-0067/21/19/7102in silico target predictiondihydrochalconesSEASwissTargetPredictionSuperPredpolypharmacology
spellingShingle Fabian Mayr
Gabriele Möller
Ulrike Garscha
Jana Fischer
Patricia Rodríguez Castaño
Silvia G. Inderbinen
Veronika Temml
Birgit Waltenberger
Stefan Schwaiger
Rolf W. Hartmann
Christian Gege
Stefan Martens
Alex Odermatt
Amit V. Pandey
Oliver Werz
Jerzy Adamski
Hermann Stuppner
Daniela Schuster
Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction
International Journal of Molecular Sciences
in silico target prediction
dihydrochalcones
SEA
SwissTargetPrediction
SuperPred
polypharmacology
title Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction
title_full Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction
title_fullStr Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction
title_full_unstemmed Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction
title_short Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction
title_sort finding new molecular targets of familiar natural products using in silico target prediction
topic in silico target prediction
dihydrochalcones
SEA
SwissTargetPrediction
SuperPred
polypharmacology
url https://www.mdpi.com/1422-0067/21/19/7102
work_keys_str_mv AT fabianmayr findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT gabrielemoller findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT ulrikegarscha findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT janafischer findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT patriciarodriguezcastano findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT silviaginderbinen findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT veronikatemml findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT birgitwaltenberger findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT stefanschwaiger findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT rolfwhartmann findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT christiangege findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT stefanmartens findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT alexodermatt findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT amitvpandey findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT oliverwerz findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT jerzyadamski findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT hermannstuppner findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction
AT danielaschuster findingnewmoleculartargetsoffamiliarnaturalproductsusinginsilicotargetprediction