Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>

Using a variational approach, we investigate the existence of solutions for non-autonomous perturbations of the p-Laplacian eigenvalue problem $$ -Delta _pu=f(x,u)quad { m in}quad {Bbb R}^N,. $$ Under the assumptions that the primitive $F(x,u)$ of $f(x,u)$ interacts only with the first eigenvalue, w...

Full description

Bibliographic Details
Main Author: Joao Marcos Do O
Format: Article
Language:English
Published: Texas State University 1997-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/1997/11/abstr.html
_version_ 1811247044519526400
author Joao Marcos Do O
author_facet Joao Marcos Do O
author_sort Joao Marcos Do O
collection DOAJ
description Using a variational approach, we investigate the existence of solutions for non-autonomous perturbations of the p-Laplacian eigenvalue problem $$ -Delta _pu=f(x,u)quad { m in}quad {Bbb R}^N,. $$ Under the assumptions that the primitive $F(x,u)$ of $f(x,u)$ interacts only with the first eigenvalue, we look for solutions in the space $D^{1,p}({Bbb R}^N)$. Furthermore, we assume a condition that measures how different the behavior of the function $F(x,u)$ is from that of the $p$-power of $u$.
first_indexed 2024-04-12T15:02:33Z
format Article
id doaj.art-bb268ed72faa4a6fa25e0f5ed477f6e3
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-12T15:02:33Z
publishDate 1997-07-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-bb268ed72faa4a6fa25e0f5ed477f6e32022-12-22T03:28:02ZengTexas State UniversityElectronic Journal of Differential Equations1072-66911997-07-01199711115Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>Joao Marcos Do OUsing a variational approach, we investigate the existence of solutions for non-autonomous perturbations of the p-Laplacian eigenvalue problem $$ -Delta _pu=f(x,u)quad { m in}quad {Bbb R}^N,. $$ Under the assumptions that the primitive $F(x,u)$ of $f(x,u)$ interacts only with the first eigenvalue, we look for solutions in the space $D^{1,p}({Bbb R}^N)$. Furthermore, we assume a condition that measures how different the behavior of the function $F(x,u)$ is from that of the $p$-power of $u$.http://ejde.math.txstate.edu/Volumes/1997/11/abstr.htmlMountain Pass TheoremPalais-Smale ConditionFirst eigenvalue
spellingShingle Joao Marcos Do O
Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>
Electronic Journal of Differential Equations
Mountain Pass Theorem
Palais-Smale Condition
First eigenvalue
title Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>
title_full Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>
title_fullStr Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>
title_full_unstemmed Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>
title_short Solutions to perturbed eigenvalue problems of the p-Laplacian in R<sup><small>N</small></sup>
title_sort solutions to perturbed eigenvalue problems of the p laplacian in r sup small n small sup
topic Mountain Pass Theorem
Palais-Smale Condition
First eigenvalue
url http://ejde.math.txstate.edu/Volumes/1997/11/abstr.html
work_keys_str_mv AT joaomarcosdoo solutionstoperturbedeigenvalueproblemsoftheplaplacianinrsupsmallnsmallsup