Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm
Sensorimotor integration within the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of EEG data to describe anterior sensorimotor (e.g., premotor cortex; PMC) activity during sp...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-10-01
|
Series: | Frontiers in Human Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fnhum.2015.00534/full |
_version_ | 1818411958815162368 |
---|---|
author | David E Jenson Ashley W Harkrider David eThornton Andrew L. Bowers Tim eSaltuklaroglu |
author_facet | David E Jenson Ashley W Harkrider David eThornton Andrew L. Bowers Tim eSaltuklaroglu |
author_sort | David E Jenson |
collection | DOAJ |
description | Sensorimotor integration within the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of EEG data to describe anterior sensorimotor (e.g., premotor cortex; PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required ‘active’ discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral ‘auditory’ alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < .05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions also temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique. |
first_indexed | 2024-12-14T10:39:41Z |
format | Article |
id | doaj.art-bb26d6fbe4434b7f9b01ba4f4979b006 |
institution | Directory Open Access Journal |
issn | 1662-5161 |
language | English |
last_indexed | 2024-12-14T10:39:41Z |
publishDate | 2015-10-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Human Neuroscience |
spelling | doaj.art-bb26d6fbe4434b7f9b01ba4f4979b0062022-12-21T23:05:46ZengFrontiers Media S.A.Frontiers in Human Neuroscience1662-51612015-10-01910.3389/fnhum.2015.00534151660Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythmDavid E Jenson0Ashley W Harkrider1David eThornton2Andrew L. Bowers3Tim eSaltuklaroglu4University of TennesseeUniversity of TennesseeUniversity of TennesseeUniversity of ArkansasUniversity of TennesseeSensorimotor integration within the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of EEG data to describe anterior sensorimotor (e.g., premotor cortex; PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required ‘active’ discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral ‘auditory’ alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < .05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions also temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique.http://journal.frontiersin.org/Journal/10.3389/fnhum.2015.00534/fullEEGsensorimotor integrationdorsal streamauditory alphaspeech-induced suppression |
spellingShingle | David E Jenson Ashley W Harkrider David eThornton Andrew L. Bowers Tim eSaltuklaroglu Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm Frontiers in Human Neuroscience EEG sensorimotor integration dorsal stream auditory alpha speech-induced suppression |
title | Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm |
title_full | Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm |
title_fullStr | Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm |
title_full_unstemmed | Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm |
title_short | Auditory Cortical Deactivation during Speech Production and following Speech Perception: An EEG investigation of the temporal dynamics of the auditory alpha rhythm |
title_sort | auditory cortical deactivation during speech production and following speech perception an eeg investigation of the temporal dynamics of the auditory alpha rhythm |
topic | EEG sensorimotor integration dorsal stream auditory alpha speech-induced suppression |
url | http://journal.frontiersin.org/Journal/10.3389/fnhum.2015.00534/full |
work_keys_str_mv | AT davidejenson auditorycorticaldeactivationduringspeechproductionandfollowingspeechperceptionaneeginvestigationofthetemporaldynamicsoftheauditoryalpharhythm AT ashleywharkrider auditorycorticaldeactivationduringspeechproductionandfollowingspeechperceptionaneeginvestigationofthetemporaldynamicsoftheauditoryalpharhythm AT davidethornton auditorycorticaldeactivationduringspeechproductionandfollowingspeechperceptionaneeginvestigationofthetemporaldynamicsoftheauditoryalpharhythm AT andrewlbowers auditorycorticaldeactivationduringspeechproductionandfollowingspeechperceptionaneeginvestigationofthetemporaldynamicsoftheauditoryalpharhythm AT timesaltuklaroglu auditorycorticaldeactivationduringspeechproductionandfollowingspeechperceptionaneeginvestigationofthetemporaldynamicsoftheauditoryalpharhythm |