Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements
<p>The Sierra Nevada Lidar aerOsol Profiling Experiment I and II (SLOPE I and II) campaigns were intended to determine the vertical structure of aerosols by remote sensing instruments and test the various retrieval schemes for obtaining aerosol microphysical and optical properties with in sit...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-06-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/21/9269/2021/acp-21-9269-2021.pdf |
_version_ | 1819084935789543424 |
---|---|
author | J. A. Benavent-Oltra J. A. Benavent-Oltra J. A. Benavent-Oltra J. A. Casquero-Vera J. A. Casquero-Vera R. Román H. Lyamani H. Lyamani D. Pérez-Ramírez D. Pérez-Ramírez M. J. Granados-Muñoz M. J. Granados-Muñoz M. Herrera A. Cazorla A. Cazorla G. Titos G. Titos P. Ortiz-Amezcua P. Ortiz-Amezcua P. Ortiz-Amezcua A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez G. de Arruda Moreira G. de Arruda Moreira N. Pérez A. Alastuey O. Dubovik J. L. Guerrero-Rascado J. L. Guerrero-Rascado F. J. Olmo-Reyes F. J. Olmo-Reyes L. Alados-Arboledas L. Alados-Arboledas |
author_facet | J. A. Benavent-Oltra J. A. Benavent-Oltra J. A. Benavent-Oltra J. A. Casquero-Vera J. A. Casquero-Vera R. Román H. Lyamani H. Lyamani D. Pérez-Ramírez D. Pérez-Ramírez M. J. Granados-Muñoz M. J. Granados-Muñoz M. Herrera A. Cazorla A. Cazorla G. Titos G. Titos P. Ortiz-Amezcua P. Ortiz-Amezcua P. Ortiz-Amezcua A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez G. de Arruda Moreira G. de Arruda Moreira N. Pérez A. Alastuey O. Dubovik J. L. Guerrero-Rascado J. L. Guerrero-Rascado F. J. Olmo-Reyes F. J. Olmo-Reyes L. Alados-Arboledas L. Alados-Arboledas |
author_sort | J. A. Benavent-Oltra |
collection | DOAJ |
description | <p>The Sierra Nevada Lidar aerOsol Profiling Experiment I and II
(SLOPE I and II) campaigns were intended to determine the vertical structure
of aerosols by remote sensing instruments and test the various retrieval
schemes for obtaining aerosol microphysical and optical properties with
in situ measurements. The SLOPE I and II campaigns were developed during the
summers of 2016 and 2017, respectively, combining active and passive remote
sensing with in situ measurements at stations belonging to the AGORA
observatory (Andalusian Global ObseRvatory of the Atmosphere) in the Granada
area (Spain). In this work, we use the in situ measurements of these
campaigns to evaluate aerosol properties retrieved by the GRASP code
(Generalized Retrieval of Atmosphere and Surface Properties) combining lidar
and sun–sky photometer measurements. We show an overview of aerosol
properties retrieved by GRASP during the SLOPE I and II campaigns. In addition, we
evaluate the GRASP retrievals of total aerosol volume concentration
(discerning between fine and coarse modes), extinction and scattering
coefficients, and for the first time we present an evaluation of the absorption
coefficient.</p>
<p>The statistical analysis of aerosol optical and microphysical
properties, both column-integrated and vertically resolved, from May to July 2016 and 2017 shows a large variability in aerosol load and types. The
results show a strong predominance of desert dust particles due to North
African intrusions. The vertically resolved analysis denotes a decay of the
atmospheric aerosols with an altitude up to 5 km a.s.l. Finally, desert dust
and biomass burning events were chosen to show the high potential of GRASP
to retrieve vertical profiles of aerosol properties (e.g. absorption
coefficient and single scattering albedo) for different aerosol types. The
aerosol properties retrieved by GRASP show good agreement with simultaneous
in situ measurements (nephelometer, aethalometer, scanning mobility particle
sizer, and aerodynamic particle sizer) performed at the Sierra Nevada Station
(SNS) in Granada. In general, GRASP overestimates the in situ data at the SNS
with a mean difference lower than 6 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>3</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> for volume
concentration, and 11 and 2 Mm<span class="inline-formula"><sup>−1</sup></span> for the scattering and absorption
coefficients. On the other hand, the comparison of GRASP with airborne
measurements also shows an overestimation with mean absolute differences of
14 <span class="inline-formula">±</span> 10 and 1.2 <span class="inline-formula">±</span> 1.2 Mm<span class="inline-formula"><sup>−1</sup></span> for the scattering<span id="page9270"/> and
absorption coefficients, showing a better agreement for the absorption
(scattering) coefficient with higher (lower) aerosol optical depth. The
potential of GRASP shown in this study will contribute to enhancing the
representativeness of the aerosol vertical distribution and provide
information for satellite and global model evaluation.</p> |
first_indexed | 2024-12-21T20:56:22Z |
format | Article |
id | doaj.art-bb33d52af733439d93ea23e656507728 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-21T20:56:22Z |
publishDate | 2021-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-bb33d52af733439d93ea23e6565077282022-12-21T18:50:35ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-06-01219269928710.5194/acp-21-9269-2021Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurementsJ. A. Benavent-Oltra0J. A. Benavent-Oltra1J. A. Benavent-Oltra2J. A. Casquero-Vera3J. A. Casquero-Vera4R. Román5H. Lyamani6H. Lyamani7D. Pérez-Ramírez8D. Pérez-Ramírez9M. J. Granados-Muñoz10M. J. Granados-Muñoz11M. Herrera12A. Cazorla13A. Cazorla14G. Titos15G. Titos16P. Ortiz-Amezcua17P. Ortiz-Amezcua18P. Ortiz-Amezcua19A. E. Bedoya-Velásquez20A. E. Bedoya-Velásquez21G. de Arruda Moreira22G. de Arruda Moreira23N. Pérez24A. Alastuey25O. Dubovik26J. L. Guerrero-Rascado27J. L. Guerrero-Rascado28F. J. Olmo-Reyes29F. J. Olmo-Reyes30L. Alados-Arboledas31L. Alados-Arboledas32Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, ItalyDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainGroup of Atmospheric Optics (GOA-UVa), Universidad de Valladolid, Valladolid, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainLaboratoire d'Optique Atmosphérique (LOA), UMR8518 CNRS, Université de Lille, Villeneuve D'ASCQ, FranceDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainInstitute of Geophysics, Faculty of Physics, University of Warsaw (IGFUW), Warsaw, PolandAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainThe French Aeorospace Lab, ONERA, Toulouse, FranceAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainFederal Institute of São Paulo (IFSP), Campus Registro, São Paulo, BrazilInstitute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, SpainInstitute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, SpainLaboratoire d'Optique Atmosphérique (LOA), UMR8518 CNRS, Université de Lille, Villeneuve D'ASCQ, FranceDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, SpainDepartment of Applied Physics, Universidad de Granada, Granada, SpainAndalusian Institute for Earth System Research, IISTA-CEAMA, Granada, Spain<p>The Sierra Nevada Lidar aerOsol Profiling Experiment I and II (SLOPE I and II) campaigns were intended to determine the vertical structure of aerosols by remote sensing instruments and test the various retrieval schemes for obtaining aerosol microphysical and optical properties with in situ measurements. The SLOPE I and II campaigns were developed during the summers of 2016 and 2017, respectively, combining active and passive remote sensing with in situ measurements at stations belonging to the AGORA observatory (Andalusian Global ObseRvatory of the Atmosphere) in the Granada area (Spain). In this work, we use the in situ measurements of these campaigns to evaluate aerosol properties retrieved by the GRASP code (Generalized Retrieval of Atmosphere and Surface Properties) combining lidar and sun–sky photometer measurements. We show an overview of aerosol properties retrieved by GRASP during the SLOPE I and II campaigns. In addition, we evaluate the GRASP retrievals of total aerosol volume concentration (discerning between fine and coarse modes), extinction and scattering coefficients, and for the first time we present an evaluation of the absorption coefficient.</p> <p>The statistical analysis of aerosol optical and microphysical properties, both column-integrated and vertically resolved, from May to July 2016 and 2017 shows a large variability in aerosol load and types. The results show a strong predominance of desert dust particles due to North African intrusions. The vertically resolved analysis denotes a decay of the atmospheric aerosols with an altitude up to 5 km a.s.l. Finally, desert dust and biomass burning events were chosen to show the high potential of GRASP to retrieve vertical profiles of aerosol properties (e.g. absorption coefficient and single scattering albedo) for different aerosol types. The aerosol properties retrieved by GRASP show good agreement with simultaneous in situ measurements (nephelometer, aethalometer, scanning mobility particle sizer, and aerodynamic particle sizer) performed at the Sierra Nevada Station (SNS) in Granada. In general, GRASP overestimates the in situ data at the SNS with a mean difference lower than 6 <span class="inline-formula">µ</span>m<span class="inline-formula"><sup>3</sup></span> cm<span class="inline-formula"><sup>−3</sup></span> for volume concentration, and 11 and 2 Mm<span class="inline-formula"><sup>−1</sup></span> for the scattering and absorption coefficients. On the other hand, the comparison of GRASP with airborne measurements also shows an overestimation with mean absolute differences of 14 <span class="inline-formula">±</span> 10 and 1.2 <span class="inline-formula">±</span> 1.2 Mm<span class="inline-formula"><sup>−1</sup></span> for the scattering<span id="page9270"/> and absorption coefficients, showing a better agreement for the absorption (scattering) coefficient with higher (lower) aerosol optical depth. The potential of GRASP shown in this study will contribute to enhancing the representativeness of the aerosol vertical distribution and provide information for satellite and global model evaluation.</p>https://acp.copernicus.org/articles/21/9269/2021/acp-21-9269-2021.pdf |
spellingShingle | J. A. Benavent-Oltra J. A. Benavent-Oltra J. A. Benavent-Oltra J. A. Casquero-Vera J. A. Casquero-Vera R. Román H. Lyamani H. Lyamani D. Pérez-Ramírez D. Pérez-Ramírez M. J. Granados-Muñoz M. J. Granados-Muñoz M. Herrera A. Cazorla A. Cazorla G. Titos G. Titos P. Ortiz-Amezcua P. Ortiz-Amezcua P. Ortiz-Amezcua A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez G. de Arruda Moreira G. de Arruda Moreira N. Pérez A. Alastuey O. Dubovik J. L. Guerrero-Rascado J. L. Guerrero-Rascado F. J. Olmo-Reyes F. J. Olmo-Reyes L. Alados-Arboledas L. Alados-Arboledas Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements Atmospheric Chemistry and Physics |
title | Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements |
title_full | Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements |
title_fullStr | Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements |
title_full_unstemmed | Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements |
title_short | Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements |
title_sort | overview of the slope i and ii campaigns aerosol properties retrieved with lidar and sun sky photometer measurements |
url | https://acp.copernicus.org/articles/21/9269/2021/acp-21-9269-2021.pdf |
work_keys_str_mv | AT jabenaventoltra overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT jabenaventoltra overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT jabenaventoltra overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT jacasquerovera overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT jacasquerovera overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT rroman overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT hlyamani overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT hlyamani overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT dperezramirez overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT dperezramirez overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT mjgranadosmunoz overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT mjgranadosmunoz overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT mherrera overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT acazorla overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT acazorla overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT gtitos overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT gtitos overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT portizamezcua overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT portizamezcua overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT portizamezcua overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT aebedoyavelasquez overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT aebedoyavelasquez overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT gdearrudamoreira overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT gdearrudamoreira overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT nperez overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT aalastuey overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT odubovik overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT jlguerrerorascado overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT jlguerrerorascado overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT fjolmoreyes overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT fjolmoreyes overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT laladosarboledas overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements AT laladosarboledas overviewoftheslopeiandiicampaignsaerosolpropertiesretrievedwithlidarandsunskyphotometermeasurements |