Summary: | <i>Angelicae pubescentis</i> radix (APR) has been traditionally used for thousands of years in China to treat rheumatoid arthritis (RA), an autoimmune disorder. As the main active coumarin of APR, columbianadin (CBN) exhibits a significant anti-inflammatory effect in vitro. However, the anti-inflammatory activity and underlying mechanism of CBN in vivo remain unclear. This work aimed to elucidate the anti-inflammatory activity of CBN in vivo and its related signaling pathways in a D-Gal-induced liver injury mouse model. Analysis of biochemical indices (ALT and AST) and pro-inflammatory cytokines (IL-1β and IL-6) in serum indicated that CBN significantly ameliorated D-Gal-induced liver injury. CBN treatment also significantly increased the activities of antioxidant enzymes (SOD, CAT, GPx), and decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in liver tissue. Liver histology revealed that CBN treatment reduced hepatic inflammation. Western blot analysis indicated that CBN down-regulates the expression of phosphorylated JAK2, STAT3, MAPK, and NF-κB in the related signaling pathways. These findings support the traditional use of APR as a remedy for the immune system, and indicate that the JAK2/STAT3 and JAK2/p38/NF-κB signaling pathways may be important mechanisms for the anti-inflammatory activity of CBN in vivo.
|