Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr
Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be chol...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2023-01-01
|
Series: | Journal of Nutritional Science |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2048679023000459/type/journal_article |
_version_ | 1797820322186002432 |
---|---|
author | Daphne Siciliani Trond M. Kortner Gerd M. Berge Anne Kristine Hansen Åshild Krogdahl |
author_facet | Daphne Siciliani Trond M. Kortner Gerd M. Berge Anne Kristine Hansen Åshild Krogdahl |
author_sort | Daphne Siciliani |
collection | DOAJ |
description | Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield. |
first_indexed | 2024-03-13T09:37:41Z |
format | Article |
id | doaj.art-bb5c5209b5e943d089c6563a6d281035 |
institution | Directory Open Access Journal |
issn | 2048-6790 |
language | English |
last_indexed | 2024-03-13T09:37:41Z |
publishDate | 2023-01-01 |
publisher | Cambridge University Press |
record_format | Article |
series | Journal of Nutritional Science |
spelling | doaj.art-bb5c5209b5e943d089c6563a6d2810352023-05-25T10:32:48ZengCambridge University PressJournal of Nutritional Science2048-67902023-01-011210.1017/jns.2023.45Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parrDaphne Siciliani0https://orcid.org/0000-0001-9348-1744Trond M. Kortner1Gerd M. Berge2Anne Kristine Hansen3https://orcid.org/0000-0002-0109-0816Åshild Krogdahl4Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, NorwayDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, NorwayNOFIMA, Sunndalsøra, NorwayBiomar AS, Havnegata 9, Trondheim 7010, NorwayDepartment of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, NorwayCholine was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield.https://www.cambridge.org/core/product/identifier/S2048679023000459/type/journal_articleCholine requirementFish nutritionGut healthLipid accumulationPlant feed |
spellingShingle | Daphne Siciliani Trond M. Kortner Gerd M. Berge Anne Kristine Hansen Åshild Krogdahl Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr Journal of Nutritional Science Choline requirement Fish nutrition Gut health Lipid accumulation Plant feed |
title | Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr |
title_full | Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr |
title_fullStr | Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr |
title_full_unstemmed | Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr |
title_short | Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon (Salmo salar L) parr |
title_sort | effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver and choline requirement in atlantic salmon salmo salar l parr |
topic | Choline requirement Fish nutrition Gut health Lipid accumulation Plant feed |
url | https://www.cambridge.org/core/product/identifier/S2048679023000459/type/journal_article |
work_keys_str_mv | AT daphnesiciliani effectsofdietarylipidlevelandenvironmentaltemperatureonlipidmetabolismintheintestineandliverandcholinerequirementinatlanticsalmonsalmosalarlparr AT trondmkortner effectsofdietarylipidlevelandenvironmentaltemperatureonlipidmetabolismintheintestineandliverandcholinerequirementinatlanticsalmonsalmosalarlparr AT gerdmberge effectsofdietarylipidlevelandenvironmentaltemperatureonlipidmetabolismintheintestineandliverandcholinerequirementinatlanticsalmonsalmosalarlparr AT annekristinehansen effectsofdietarylipidlevelandenvironmentaltemperatureonlipidmetabolismintheintestineandliverandcholinerequirementinatlanticsalmonsalmosalarlparr AT ashildkrogdahl effectsofdietarylipidlevelandenvironmentaltemperatureonlipidmetabolismintheintestineandliverandcholinerequirementinatlanticsalmonsalmosalarlparr |