Stability Analysis of Jinchuan Hydropower Station Hydraulic Tunnels during Excavation and Unloading

As the hydropower development strategies of China continue to be implemented, a host of large hydropower projects have been completed or are being constructed in southwest China. During construction of the Jinchuan hydropower station, this study examined the stability of the surrounding rock during...

Full description

Bibliographic Details
Main Authors: Yan Zhang, Haoyu Mao, Biao Li, Yuepeng Sun
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/22/11660
Description
Summary:As the hydropower development strategies of China continue to be implemented, a host of large hydropower projects have been completed or are being constructed in southwest China. During construction of the Jinchuan hydropower station, this study examined the stability of the surrounding rock during the excavation and unloading of hydraulic tunnels under demanding geological conditions. Microseismic (MS) monitoring technology was employed to monitor the deformation and failure of the surrounding rock online and in real time, based on engineering geological data and site surveys. To analyze the stability of the surrounding rock in the spillway tunnel and to study the temporal and spatial evolution characteristics of MS events, source parameter analysis and numerical modeling were performed. The 3D finite-difference numerical modeling software FLAC3D was used to simulate the mechanical response of the surrounding rock during the excavation and unloading of the spillway tunnel and the diversion tunnel. The numerical modeling results were compared with the monitoring results and site surveys to determine the failure mechanisms of the surrounding rock during the construction and unloading of the hydraulic tunnels. The research results can serve as a guide for studying the stability of the surrounding rock in similar hydraulic tunnels.
ISSN:2076-3417