Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant

In this work, a color image encryption and decryption algorithm for digital images is presented. It is based on the modular discrete derivative (MDD), a novel technique to encrypt images and efficiently hide visual information. In addition, Langton’s ant, which is a two-dimensional universal Turing...

Full description

Bibliographic Details
Main Authors: Ernesto Moya-Albor, Andrés Romero-Arellano, Jorge Brieva, Sandra L. Gomez-Coronel
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/10/2396
_version_ 1797599218255265792
author Ernesto Moya-Albor
Andrés Romero-Arellano
Jorge Brieva
Sandra L. Gomez-Coronel
author_facet Ernesto Moya-Albor
Andrés Romero-Arellano
Jorge Brieva
Sandra L. Gomez-Coronel
author_sort Ernesto Moya-Albor
collection DOAJ
description In this work, a color image encryption and decryption algorithm for digital images is presented. It is based on the modular discrete derivative (MDD), a novel technique to encrypt images and efficiently hide visual information. In addition, Langton’s ant, which is a two-dimensional universal Turing machine with a high key space, is used. Moreover, a deterministic noise technique that adds security to the MDD is utilized. The proposed hybrid scheme exploits the advantages of MDD and Langton’s ant, generating a very secure and reliable encryption algorithm. In this proposal, if the key is known, the original image is recovered without loss. The method has demonstrated high performance through various tests, including statistical analysis (histograms and correlation distributions), entropy, texture analysis, encryption quality, key space assessment, key sensitivity analysis, and robustness to differential attack. The proposed method highlights obtaining chi-square values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>233.951</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>281.687</mn></mrow></semantics></math></inline-formula>, entropy values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.9999225223</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.9999355791</mn></mrow></semantics></math></inline-formula>, PSNR values (in the original and encrypted images) between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.134</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.957</mn></mrow></semantics></math></inline-formula>, the number of pixel change rate (NPCR) values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.60851796</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.61054611</mn><mo>%</mo></mrow></semantics></math></inline-formula>, unified average changing intensity (UACI) values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>33.44672377</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>33.47430379</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and a vast range of possible keys <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>></mo><mn>5.8459</mn><mo>×</mo><msup><mn>10</mn><mn>72</mn></msup></mrow></semantics></math></inline-formula>. On the other hand, an analysis of the sensitivity of the key shows that slight changes to the key do not generate any additional information to decrypt the image. In addition, the proposed method shows a competitive performance against recent works found in the literature.
first_indexed 2024-03-11T03:31:37Z
format Article
id doaj.art-bb6d95b076534727ba7ef00b165600aa
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T03:31:37Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-bb6d95b076534727ba7ef00b165600aa2023-11-18T02:20:24ZengMDPI AGMathematics2227-73902023-05-011110239610.3390/math11102396Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s AntErnesto Moya-Albor0Andrés Romero-Arellano1Jorge Brieva2Sandra L. Gomez-Coronel3Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, MexicoFacultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, MexicoFacultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, MexicoInstituto Politecnico Nacional, UPIITA, Av. IPN No. 2580, Col. La Laguna Ticoman, Ciudad de México 07340, MexicoIn this work, a color image encryption and decryption algorithm for digital images is presented. It is based on the modular discrete derivative (MDD), a novel technique to encrypt images and efficiently hide visual information. In addition, Langton’s ant, which is a two-dimensional universal Turing machine with a high key space, is used. Moreover, a deterministic noise technique that adds security to the MDD is utilized. The proposed hybrid scheme exploits the advantages of MDD and Langton’s ant, generating a very secure and reliable encryption algorithm. In this proposal, if the key is known, the original image is recovered without loss. The method has demonstrated high performance through various tests, including statistical analysis (histograms and correlation distributions), entropy, texture analysis, encryption quality, key space assessment, key sensitivity analysis, and robustness to differential attack. The proposed method highlights obtaining chi-square values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>233.951</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>281.687</mn></mrow></semantics></math></inline-formula>, entropy values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.9999225223</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.9999355791</mn></mrow></semantics></math></inline-formula>, PSNR values (in the original and encrypted images) between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8.134</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.957</mn></mrow></semantics></math></inline-formula>, the number of pixel change rate (NPCR) values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.60851796</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.61054611</mn><mo>%</mo></mrow></semantics></math></inline-formula>, unified average changing intensity (UACI) values between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>33.44672377</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>33.47430379</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and a vast range of possible keys <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>></mo><mn>5.8459</mn><mo>×</mo><msup><mn>10</mn><mn>72</mn></msup></mrow></semantics></math></inline-formula>. On the other hand, an analysis of the sensitivity of the key shows that slight changes to the key do not generate any additional information to decrypt the image. In addition, the proposed method shows a competitive performance against recent works found in the literature.https://www.mdpi.com/2227-7390/11/10/2396image encryption and decryptionmodular discrete derivativecellular automataLangton’s antdeterministic noisechaos theory
spellingShingle Ernesto Moya-Albor
Andrés Romero-Arellano
Jorge Brieva
Sandra L. Gomez-Coronel
Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant
Mathematics
image encryption and decryption
modular discrete derivative
cellular automata
Langton’s ant
deterministic noise
chaos theory
title Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant
title_full Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant
title_fullStr Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant
title_full_unstemmed Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant
title_short Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant
title_sort color image encryption algorithm based on a chaotic model using the modular discrete derivative and langton s ant
topic image encryption and decryption
modular discrete derivative
cellular automata
Langton’s ant
deterministic noise
chaos theory
url https://www.mdpi.com/2227-7390/11/10/2396
work_keys_str_mv AT ernestomoyaalbor colorimageencryptionalgorithmbasedonachaoticmodelusingthemodulardiscretederivativeandlangtonsant
AT andresromeroarellano colorimageencryptionalgorithmbasedonachaoticmodelusingthemodulardiscretederivativeandlangtonsant
AT jorgebrieva colorimageencryptionalgorithmbasedonachaoticmodelusingthemodulardiscretederivativeandlangtonsant
AT sandralgomezcoronel colorimageencryptionalgorithmbasedonachaoticmodelusingthemodulardiscretederivativeandlangtonsant