Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically e...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/24/3/891 |
_version_ | 1797318211558965248 |
---|---|
author | Cristina Cunha Catarina Monteiro António Vaz Susana Silva Orlando Frazão Susana Novais |
author_facet | Cristina Cunha Catarina Monteiro António Vaz Susana Silva Orlando Frazão Susana Novais |
author_sort | Cristina Cunha |
collection | DOAJ |
description | This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 µm/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 ± 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 ± 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL. |
first_indexed | 2024-03-08T03:49:06Z |
format | Article |
id | doaj.art-bb82b93dffbb4877be5a4e37d12416b0 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-08T03:49:06Z |
publishDate | 2024-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-bb82b93dffbb4877be5a4e37d12416b02024-02-09T15:22:09ZengMDPI AGSensors1424-82202024-01-0124389110.3390/s24030891Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide CoatingCristina Cunha0Catarina Monteiro1António Vaz2Susana Silva3Orlando Frazão4Susana Novais5INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4150-179 Porto, PortugalINESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4150-179 Porto, PortugalINESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4150-179 Porto, PortugalINESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4150-179 Porto, PortugalINESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4150-179 Porto, PortugalINESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4150-179 Porto, PortugalThis paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 µm/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 ± 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 ± 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.https://www.mdpi.com/1424-8220/24/3/891glucose detectiongraphene oxidemultiphysics comsolself-image point |
spellingShingle | Cristina Cunha Catarina Monteiro António Vaz Susana Silva Orlando Frazão Susana Novais Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating Sensors glucose detection graphene oxide multiphysics comsol self-image point |
title | Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating |
title_full | Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating |
title_fullStr | Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating |
title_full_unstemmed | Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating |
title_short | Enhanced Sensitivity in Optical Sensors through Self-Image Theory and Graphene Oxide Coating |
title_sort | enhanced sensitivity in optical sensors through self image theory and graphene oxide coating |
topic | glucose detection graphene oxide multiphysics comsol self-image point |
url | https://www.mdpi.com/1424-8220/24/3/891 |
work_keys_str_mv | AT cristinacunha enhancedsensitivityinopticalsensorsthroughselfimagetheoryandgrapheneoxidecoating AT catarinamonteiro enhancedsensitivityinopticalsensorsthroughselfimagetheoryandgrapheneoxidecoating AT antoniovaz enhancedsensitivityinopticalsensorsthroughselfimagetheoryandgrapheneoxidecoating AT susanasilva enhancedsensitivityinopticalsensorsthroughselfimagetheoryandgrapheneoxidecoating AT orlandofrazao enhancedsensitivityinopticalsensorsthroughselfimagetheoryandgrapheneoxidecoating AT susananovais enhancedsensitivityinopticalsensorsthroughselfimagetheoryandgrapheneoxidecoating |