A Hybrid-Driven Optimization Framework for Fixed-Wing UAV Maneuvering Flight Planning

Performing autonomous maneuvering flight planning and optimization remains a challenge for unmanned aerial vehicles (UAVs), especially for fixed-wing UAVs due to its high maneuverability and model complexity. A novel hybrid-driven fixed-wing UAV maneuver optimization framework, inspired by apprentic...

Full description

Bibliographic Details
Main Authors: Renshan Zhang, Su Cao, Kuang Zhao, Huangchao Yu, Yongyang Hu
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/19/2330
Description
Summary:Performing autonomous maneuvering flight planning and optimization remains a challenge for unmanned aerial vehicles (UAVs), especially for fixed-wing UAVs due to its high maneuverability and model complexity. A novel hybrid-driven fixed-wing UAV maneuver optimization framework, inspired by apprenticeship learning and nonlinear programing approaches, is proposed in this paper. The work consists of two main aspects: (1) Identifying the model parameters for a certain fixed-wing UAV based on the demonstrated flight data performed by human pilot. Then, the features of the maneuvers can be described by the positional/attitude/compound key-frames. Eventually, each of the maneuvers can be decomposed into several motion primitives. (2) Formulating the maneuver planning issue into a minimum-time optimization problem, a novel nonlinear programming algorithm was developed, which was unnecessary to determine the exact time for the UAV to pass by the key-frames. The simulation results illustrate the effectiveness of the proposed framework in several scenarios, as both the preservation of geometric features and the minimization of maneuver times were ensured.
ISSN:2079-9292