Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance

We employed an unsupervised clustering method that integrated demographic, clinical, and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled in the Myocardial Iron Ove...

Full description

Bibliographic Details
Main Authors: Antonella Meloni, Michela Parravano, Laura Pistoia, Alberto Cossu, Emanuele Grassedonio, Stefania Renne, Priscilla Fina, Anna Spasiano, Alessandra Salvo, Sergio Bagnato, Calogera Gerardi, Zelia Borsellino, Filippo Cademartiri, Vincenzo Positano
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/12/21/6706
_version_ 1797631746290745344
author Antonella Meloni
Michela Parravano
Laura Pistoia
Alberto Cossu
Emanuele Grassedonio
Stefania Renne
Priscilla Fina
Anna Spasiano
Alessandra Salvo
Sergio Bagnato
Calogera Gerardi
Zelia Borsellino
Filippo Cademartiri
Vincenzo Positano
author_facet Antonella Meloni
Michela Parravano
Laura Pistoia
Alberto Cossu
Emanuele Grassedonio
Stefania Renne
Priscilla Fina
Anna Spasiano
Alessandra Salvo
Sergio Bagnato
Calogera Gerardi
Zelia Borsellino
Filippo Cademartiri
Vincenzo Positano
author_sort Antonella Meloni
collection DOAJ
description We employed an unsupervised clustering method that integrated demographic, clinical, and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) Network who underwent MR for the quantification of hepatic and cardiac iron overload (T2* technique), the assessment of biventricular size and function and atrial dimensions (cine images), and the detection of replacement myocardial fibrosis (late gadolinium enhancement technique). Three mutually exclusive phenogroups were identified based on unsupervised hierarchical clustering of principal components: PG1, women; PG2, patients with replacement myocardial fibrosis, increased biventricular volumes and masses, and lower left ventricular ejection fraction; and PG3, men without replacement myocardial fibrosis, but with increased biventricular volumes and masses and lower left ventricular ejection fraction. The hematochemical parameters and the hepatic and cardiac iron levels did not contribute to the PG definition. PG2 exhibited a significantly higher risk of future cardiovascular events (heart failure, arrhythmias, and pulmonary hypertension) than PG1 (hazard ratio-HR = 10.5; <i>p</i> = 0.027) and PG3 (HR = 9.0; <i>p</i> = 0.038). Clustering emerged as a useful tool for risk stratification in TI, enabling the identification of three phenogroups with distinct clinical and prognostic characteristics.
first_indexed 2024-03-11T11:27:43Z
format Article
id doaj.art-bb96fb1eb767461aafc6b24b97ea565f
institution Directory Open Access Journal
issn 2077-0383
language English
last_indexed 2024-03-11T11:27:43Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Journal of Clinical Medicine
spelling doaj.art-bb96fb1eb767461aafc6b24b97ea565f2023-11-10T15:06:09ZengMDPI AGJournal of Clinical Medicine2077-03832023-10-011221670610.3390/jcm12216706Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic ResonanceAntonella Meloni0Michela Parravano1Laura Pistoia2Alberto Cossu3Emanuele Grassedonio4Stefania Renne5Priscilla Fina6Anna Spasiano7Alessandra Salvo8Sergio Bagnato9Calogera Gerardi10Zelia Borsellino11Filippo Cademartiri12Vincenzo Positano13Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyUnità Operativa Complessa Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyDepartment of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyUnità Operativa Radiologia Universitaria, Azienda Ospedaliero-Universitaria “S. Anna”, 44124 Cona, FE, ItalySezione di Scienze Radiologiche, Dipartimento di Biopatologia e Biotecnologie Mediche, Policlinico “Paolo Giaccone”, 90127 Palermo, PA, ItalyStruttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, 88046 Lamezia Terme, CZ, ItalyUnità Operativa Complessa Diagnostica per Immagini, Ospedale “Sandro Pertini”, 00157 Roma, RM, ItalyUnità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, NA, ItalyUnità Operativa Semplice Talassemia, Presidio Ospedaliero “Umberto I”, 96100 Siracusa, SR, ItalyEmatologia Microcitemia, Ospedale San Giovanni di Dio—ASP Crotone, 88900 Crotone, KR, ItalyUnità Operativa Semplice Dipartimentale di Talassemia, Presidio Ospedaliero “Giovanni Paolo II”—Distretto AG2 di Sciacca, 92019 Sciacca, AG, ItalyUnità Operativa Complessa Ematologia con Talassemia, ARNAS Civico “Benfratelli-Di Cristina”, 90134 Palermo, PA, ItalyDepartment of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyDepartment of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyWe employed an unsupervised clustering method that integrated demographic, clinical, and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) Network who underwent MR for the quantification of hepatic and cardiac iron overload (T2* technique), the assessment of biventricular size and function and atrial dimensions (cine images), and the detection of replacement myocardial fibrosis (late gadolinium enhancement technique). Three mutually exclusive phenogroups were identified based on unsupervised hierarchical clustering of principal components: PG1, women; PG2, patients with replacement myocardial fibrosis, increased biventricular volumes and masses, and lower left ventricular ejection fraction; and PG3, men without replacement myocardial fibrosis, but with increased biventricular volumes and masses and lower left ventricular ejection fraction. The hematochemical parameters and the hepatic and cardiac iron levels did not contribute to the PG definition. PG2 exhibited a significantly higher risk of future cardiovascular events (heart failure, arrhythmias, and pulmonary hypertension) than PG1 (hazard ratio-HR = 10.5; <i>p</i> = 0.027) and PG3 (HR = 9.0; <i>p</i> = 0.038). Clustering emerged as a useful tool for risk stratification in TI, enabling the identification of three phenogroups with distinct clinical and prognostic characteristics.https://www.mdpi.com/2077-0383/12/21/6706clusteringphenomappingcardiovascular magnetic resonance imagingthalassemia intermedia
spellingShingle Antonella Meloni
Michela Parravano
Laura Pistoia
Alberto Cossu
Emanuele Grassedonio
Stefania Renne
Priscilla Fina
Anna Spasiano
Alessandra Salvo
Sergio Bagnato
Calogera Gerardi
Zelia Borsellino
Filippo Cademartiri
Vincenzo Positano
Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
Journal of Clinical Medicine
clustering
phenomapping
cardiovascular magnetic resonance imaging
thalassemia intermedia
title Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
title_full Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
title_fullStr Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
title_full_unstemmed Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
title_short Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
title_sort phenotypic clustering of beta thalassemia intermedia patients using cardiovascular magnetic resonance
topic clustering
phenomapping
cardiovascular magnetic resonance imaging
thalassemia intermedia
url https://www.mdpi.com/2077-0383/12/21/6706
work_keys_str_mv AT antonellameloni phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT michelaparravano phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT laurapistoia phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT albertocossu phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT emanuelegrassedonio phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT stefaniarenne phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT priscillafina phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT annaspasiano phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT alessandrasalvo phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT sergiobagnato phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT calogeragerardi phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT zeliaborsellino phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT filippocademartiri phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance
AT vincenzopositano phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance