Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance
We employed an unsupervised clustering method that integrated demographic, clinical, and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled in the Myocardial Iron Ove...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-10-01
|
Series: | Journal of Clinical Medicine |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0383/12/21/6706 |
_version_ | 1797631746290745344 |
---|---|
author | Antonella Meloni Michela Parravano Laura Pistoia Alberto Cossu Emanuele Grassedonio Stefania Renne Priscilla Fina Anna Spasiano Alessandra Salvo Sergio Bagnato Calogera Gerardi Zelia Borsellino Filippo Cademartiri Vincenzo Positano |
author_facet | Antonella Meloni Michela Parravano Laura Pistoia Alberto Cossu Emanuele Grassedonio Stefania Renne Priscilla Fina Anna Spasiano Alessandra Salvo Sergio Bagnato Calogera Gerardi Zelia Borsellino Filippo Cademartiri Vincenzo Positano |
author_sort | Antonella Meloni |
collection | DOAJ |
description | We employed an unsupervised clustering method that integrated demographic, clinical, and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) Network who underwent MR for the quantification of hepatic and cardiac iron overload (T2* technique), the assessment of biventricular size and function and atrial dimensions (cine images), and the detection of replacement myocardial fibrosis (late gadolinium enhancement technique). Three mutually exclusive phenogroups were identified based on unsupervised hierarchical clustering of principal components: PG1, women; PG2, patients with replacement myocardial fibrosis, increased biventricular volumes and masses, and lower left ventricular ejection fraction; and PG3, men without replacement myocardial fibrosis, but with increased biventricular volumes and masses and lower left ventricular ejection fraction. The hematochemical parameters and the hepatic and cardiac iron levels did not contribute to the PG definition. PG2 exhibited a significantly higher risk of future cardiovascular events (heart failure, arrhythmias, and pulmonary hypertension) than PG1 (hazard ratio-HR = 10.5; <i>p</i> = 0.027) and PG3 (HR = 9.0; <i>p</i> = 0.038). Clustering emerged as a useful tool for risk stratification in TI, enabling the identification of three phenogroups with distinct clinical and prognostic characteristics. |
first_indexed | 2024-03-11T11:27:43Z |
format | Article |
id | doaj.art-bb96fb1eb767461aafc6b24b97ea565f |
institution | Directory Open Access Journal |
issn | 2077-0383 |
language | English |
last_indexed | 2024-03-11T11:27:43Z |
publishDate | 2023-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Journal of Clinical Medicine |
spelling | doaj.art-bb96fb1eb767461aafc6b24b97ea565f2023-11-10T15:06:09ZengMDPI AGJournal of Clinical Medicine2077-03832023-10-011221670610.3390/jcm12216706Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic ResonanceAntonella Meloni0Michela Parravano1Laura Pistoia2Alberto Cossu3Emanuele Grassedonio4Stefania Renne5Priscilla Fina6Anna Spasiano7Alessandra Salvo8Sergio Bagnato9Calogera Gerardi10Zelia Borsellino11Filippo Cademartiri12Vincenzo Positano13Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyUnità Operativa Complessa Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyDepartment of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyUnità Operativa Radiologia Universitaria, Azienda Ospedaliero-Universitaria “S. Anna”, 44124 Cona, FE, ItalySezione di Scienze Radiologiche, Dipartimento di Biopatologia e Biotecnologie Mediche, Policlinico “Paolo Giaccone”, 90127 Palermo, PA, ItalyStruttura Complessa di Cardioradiologia-UTIC, Presidio Ospedaliero “Giovanni Paolo II”, 88046 Lamezia Terme, CZ, ItalyUnità Operativa Complessa Diagnostica per Immagini, Ospedale “Sandro Pertini”, 00157 Roma, RM, ItalyUnità Operativa Semplice Dipartimentale Malattie Rare del Globulo Rosso, Azienda Ospedaliera di Rilievo Nazionale “A. Cardarelli”, 80131 Napoli, NA, ItalyUnità Operativa Semplice Talassemia, Presidio Ospedaliero “Umberto I”, 96100 Siracusa, SR, ItalyEmatologia Microcitemia, Ospedale San Giovanni di Dio—ASP Crotone, 88900 Crotone, KR, ItalyUnità Operativa Semplice Dipartimentale di Talassemia, Presidio Ospedaliero “Giovanni Paolo II”—Distretto AG2 di Sciacca, 92019 Sciacca, AG, ItalyUnità Operativa Complessa Ematologia con Talassemia, ARNAS Civico “Benfratelli-Di Cristina”, 90134 Palermo, PA, ItalyDepartment of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyDepartment of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, PI, ItalyWe employed an unsupervised clustering method that integrated demographic, clinical, and cardiac magnetic resonance (CMR) data to identify distinct phenogroups (PGs) of patients with beta-thalassemia intermedia (β-TI). We considered 138 β-TI patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) Network who underwent MR for the quantification of hepatic and cardiac iron overload (T2* technique), the assessment of biventricular size and function and atrial dimensions (cine images), and the detection of replacement myocardial fibrosis (late gadolinium enhancement technique). Three mutually exclusive phenogroups were identified based on unsupervised hierarchical clustering of principal components: PG1, women; PG2, patients with replacement myocardial fibrosis, increased biventricular volumes and masses, and lower left ventricular ejection fraction; and PG3, men without replacement myocardial fibrosis, but with increased biventricular volumes and masses and lower left ventricular ejection fraction. The hematochemical parameters and the hepatic and cardiac iron levels did not contribute to the PG definition. PG2 exhibited a significantly higher risk of future cardiovascular events (heart failure, arrhythmias, and pulmonary hypertension) than PG1 (hazard ratio-HR = 10.5; <i>p</i> = 0.027) and PG3 (HR = 9.0; <i>p</i> = 0.038). Clustering emerged as a useful tool for risk stratification in TI, enabling the identification of three phenogroups with distinct clinical and prognostic characteristics.https://www.mdpi.com/2077-0383/12/21/6706clusteringphenomappingcardiovascular magnetic resonance imagingthalassemia intermedia |
spellingShingle | Antonella Meloni Michela Parravano Laura Pistoia Alberto Cossu Emanuele Grassedonio Stefania Renne Priscilla Fina Anna Spasiano Alessandra Salvo Sergio Bagnato Calogera Gerardi Zelia Borsellino Filippo Cademartiri Vincenzo Positano Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance Journal of Clinical Medicine clustering phenomapping cardiovascular magnetic resonance imaging thalassemia intermedia |
title | Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance |
title_full | Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance |
title_fullStr | Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance |
title_full_unstemmed | Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance |
title_short | Phenotypic Clustering of Beta-Thalassemia Intermedia Patients Using Cardiovascular Magnetic Resonance |
title_sort | phenotypic clustering of beta thalassemia intermedia patients using cardiovascular magnetic resonance |
topic | clustering phenomapping cardiovascular magnetic resonance imaging thalassemia intermedia |
url | https://www.mdpi.com/2077-0383/12/21/6706 |
work_keys_str_mv | AT antonellameloni phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT michelaparravano phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT laurapistoia phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT albertocossu phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT emanuelegrassedonio phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT stefaniarenne phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT priscillafina phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT annaspasiano phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT alessandrasalvo phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT sergiobagnato phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT calogeragerardi phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT zeliaborsellino phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT filippocademartiri phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance AT vincenzopositano phenotypicclusteringofbetathalassemiaintermediapatientsusingcardiovascularmagneticresonance |