Formation of collisionless shocks driven by strongly magnetized relativistic electrons in the laboratory

In experiments performed with the OMEGA EP laser system, proton deflectometry captured magnetic field dynamics consistent with collisionless shock formation driven by strongly magnetized relativistic electrons. During laser-foil interactions, shocks can form as relativistic electrons and strong surf...

Full description

Bibliographic Details
Main Authors: P. T. Campbell, B. K. Russell, C. Dong, G. Fiksel, P. M. Nilson, A. G. R. Thomas, C. A. Walsh, K. M. Krushelnick, L. Willingale
Format: Article
Language:English
Published: American Physical Society 2024-01-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.6.L012016
Description
Summary:In experiments performed with the OMEGA EP laser system, proton deflectometry captured magnetic field dynamics consistent with collisionless shock formation driven by strongly magnetized relativistic electrons. During laser-foil interactions, shocks can form as relativistic electrons and strong surface magnetic fields generated by a short-pulse laser impinge on a cooler plasma produced by a longer-pulse laser. Three-dimensional particle-in-cell simulations reproduce the magnetic draping and fast formation speeds measured in the experiment and reveal that this relativistic-electron-driven shock forms at an interface that is unstable to shear and streaming instabilities. The simulation results provide insight into the microphysics that may influence high-energy shocks observed in extreme astrophysical environments.
ISSN:2643-1564