Existence of solutions for a resonant Steklov Problem

In this paper, we prove the existence of weak solutions to the problem △_p u = 0 in Ω, |∇u|^{p−2} ∂_ν u = λ_1 m(x)|u|^{p−2}u + f(x, u) − h on ∂Ω, where Ω is a bounded domain in RN (N ≥ 2), m ∈ L^q(∂Ω) is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω an...

Cijeli opis

Bibliografski detalji
Glavni autori: Belhadj KARIM, Omar CHAKRONE, Aomar ANANE, Abdellah ZEROUALI
Format: Članak
Jezik:English
Izdano: Sociedade Brasileira de Matemática 2009-07-01
Serija:Boletim da Sociedade Paranaense de Matemática
Teme:
Online pristup:http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/9070/5274
_version_ 1830310047805079552
author Belhadj KARIM
Omar CHAKRONE
Aomar ANANE
Abdellah ZEROUALI
author_facet Belhadj KARIM
Omar CHAKRONE
Aomar ANANE
Abdellah ZEROUALI
author_sort Belhadj KARIM
collection DOAJ
description In this paper, we prove the existence of weak solutions to the problem △_p u = 0 in Ω, |∇u|^{p−2} ∂_ν u = λ_1 m(x)|u|^{p−2}u + f(x, u) − h on ∂Ω, where Ω is a bounded domain in RN (N ≥ 2), m ∈ L^q(∂Ω) is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω and |∇u|^{p−2} ∂_ν u=λ m(x)|u|^{p−2}u on ∂Ω. f and h are functions that satisfy some conditions.
first_indexed 2024-12-19T11:17:58Z
format Article
id doaj.art-bbae9fc8cda1444aaafd692e1a53e18d
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-12-19T11:17:58Z
publishDate 2009-07-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-bbae9fc8cda1444aaafd692e1a53e18d2022-12-21T20:23:59ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882009-07-012718590Existence of solutions for a resonant Steklov ProblemBelhadj KARIMOmar CHAKRONEAomar ANANEAbdellah ZEROUALIIn this paper, we prove the existence of weak solutions to the problem △_p u = 0 in Ω, |∇u|^{p−2} ∂_ν u = λ_1 m(x)|u|^{p−2}u + f(x, u) − h on ∂Ω, where Ω is a bounded domain in RN (N ≥ 2), m ∈ L^q(∂Ω) is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω and |∇u|^{p−2} ∂_ν u=λ m(x)|u|^{p−2}u on ∂Ω. f and h are functions that satisfy some conditions.http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/9070/5274Steklov problemWeightsLandesman-Lazer conditionsPalais–Smale conditions.
spellingShingle Belhadj KARIM
Omar CHAKRONE
Aomar ANANE
Abdellah ZEROUALI
Existence of solutions for a resonant Steklov Problem
Boletim da Sociedade Paranaense de Matemática
Steklov problem
Weights
Landesman-Lazer conditions
Palais–Smale conditions.
title Existence of solutions for a resonant Steklov Problem
title_full Existence of solutions for a resonant Steklov Problem
title_fullStr Existence of solutions for a resonant Steklov Problem
title_full_unstemmed Existence of solutions for a resonant Steklov Problem
title_short Existence of solutions for a resonant Steklov Problem
title_sort existence of solutions for a resonant steklov problem
topic Steklov problem
Weights
Landesman-Lazer conditions
Palais–Smale conditions.
url http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/9070/5274
work_keys_str_mv AT belhadjkarim existenceofsolutionsforaresonantsteklovproblem
AT omarchakrone existenceofsolutionsforaresonantsteklovproblem
AT aomaranane existenceofsolutionsforaresonantsteklovproblem
AT abdellahzerouali existenceofsolutionsforaresonantsteklovproblem