Existence of solutions for a resonant Steklov Problem
In this paper, we prove the existence of weak solutions to the problem △_p u = 0 in Ω, |∇u|^{p−2} ∂_ν u = λ_1 m(x)|u|^{p−2}u + f(x, u) − h on ∂Ω, where Ω is a bounded domain in RN (N ≥ 2), m ∈ L^q(∂Ω) is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω an...
Glavni autori: | , , , |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
Sociedade Brasileira de Matemática
2009-07-01
|
Serija: | Boletim da Sociedade Paranaense de Matemática |
Teme: | |
Online pristup: | http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/9070/5274 |
_version_ | 1830310047805079552 |
---|---|
author | Belhadj KARIM Omar CHAKRONE Aomar ANANE Abdellah ZEROUALI |
author_facet | Belhadj KARIM Omar CHAKRONE Aomar ANANE Abdellah ZEROUALI |
author_sort | Belhadj KARIM |
collection | DOAJ |
description | In this paper, we prove the existence of weak solutions to the problem △_p u = 0 in Ω, |∇u|^{p−2} ∂_ν u = λ_1 m(x)|u|^{p−2}u + f(x, u) − h on ∂Ω, where Ω is a bounded domain in RN (N ≥ 2), m ∈ L^q(∂Ω) is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω and |∇u|^{p−2} ∂_ν u=λ m(x)|u|^{p−2}u on ∂Ω. f and h are functions that satisfy some conditions. |
first_indexed | 2024-12-19T11:17:58Z |
format | Article |
id | doaj.art-bbae9fc8cda1444aaafd692e1a53e18d |
institution | Directory Open Access Journal |
issn | 0037-8712 2175-1188 |
language | English |
last_indexed | 2024-12-19T11:17:58Z |
publishDate | 2009-07-01 |
publisher | Sociedade Brasileira de Matemática |
record_format | Article |
series | Boletim da Sociedade Paranaense de Matemática |
spelling | doaj.art-bbae9fc8cda1444aaafd692e1a53e18d2022-12-21T20:23:59ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882009-07-012718590Existence of solutions for a resonant Steklov ProblemBelhadj KARIMOmar CHAKRONEAomar ANANEAbdellah ZEROUALIIn this paper, we prove the existence of weak solutions to the problem △_p u = 0 in Ω, |∇u|^{p−2} ∂_ν u = λ_1 m(x)|u|^{p−2}u + f(x, u) − h on ∂Ω, where Ω is a bounded domain in RN (N ≥ 2), m ∈ L^q(∂Ω) is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω and |∇u|^{p−2} ∂_ν u=λ m(x)|u|^{p−2}u on ∂Ω. f and h are functions that satisfy some conditions.http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/9070/5274Steklov problemWeightsLandesman-Lazer conditionsPalais–Smale conditions. |
spellingShingle | Belhadj KARIM Omar CHAKRONE Aomar ANANE Abdellah ZEROUALI Existence of solutions for a resonant Steklov Problem Boletim da Sociedade Paranaense de Matemática Steklov problem Weights Landesman-Lazer conditions Palais–Smale conditions. |
title | Existence of solutions for a resonant Steklov Problem |
title_full | Existence of solutions for a resonant Steklov Problem |
title_fullStr | Existence of solutions for a resonant Steklov Problem |
title_full_unstemmed | Existence of solutions for a resonant Steklov Problem |
title_short | Existence of solutions for a resonant Steklov Problem |
title_sort | existence of solutions for a resonant steklov problem |
topic | Steklov problem Weights Landesman-Lazer conditions Palais–Smale conditions. |
url | http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/9070/5274 |
work_keys_str_mv | AT belhadjkarim existenceofsolutionsforaresonantsteklovproblem AT omarchakrone existenceofsolutionsforaresonantsteklovproblem AT aomaranane existenceofsolutionsforaresonantsteklovproblem AT abdellahzerouali existenceofsolutionsforaresonantsteklovproblem |