Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed

Climate change and rapid urbanization could possibly increase the vulnerability of the Great Lakes Basin, Canada, which is the largest surface freshwater system in the world. This study explores the joint impact of climate change and land-use changes on the hydrology of a rapidly urbanizing Credit R...

Full description

Bibliographic Details
Main Authors: Elizabeth Philip, Ramesh P. Rudra, Pradeep K. Goel, Syed I. Ahmed
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/2/225
_version_ 1797482889174056960
author Elizabeth Philip
Ramesh P. Rudra
Pradeep K. Goel
Syed I. Ahmed
author_facet Elizabeth Philip
Ramesh P. Rudra
Pradeep K. Goel
Syed I. Ahmed
author_sort Elizabeth Philip
collection DOAJ
description Climate change and rapid urbanization could possibly increase the vulnerability of the Great Lakes Basin, Canada, which is the largest surface freshwater system in the world. This study explores the joint impact of climate change and land-use changes on the hydrology of a rapidly urbanizing Credit River watershed which lets out into Lake Ontario 25 km southwest of downtown Toronto, Ontario (ON), Canada; we began by classifying the watershed into urban and rural sections. A non-parametric Mann–Kendall test and the Sen slope estimator served to detect and describe the annual-, seasonal-, and monthly-scale trends in the climate variables (temperature, precipitation, and evapotranspiration), as well as the streamflow characteristics (median annual streamflow, baseflow, Runoff Coefficients (RC), Flow Duration Curve (FDC), Center of Volume (COV), and Peak Over Threshold (POT)) since 1916 for four rural and urban sub-watersheds. The temperature, precipitation and evapotranspiration (1950–2019) showed significant increasing trends for different months and seasons. Furthermore, the results indicated that the median annual streamflow, 7-day annual minimum flow, and days above normal are increasing; meanwhile, the annual maximum streamflow is decreasing. A total of 230 datasets were tested for their trends; of these, 80% and 20% increasing and decreasing trends were obtained, respectively. Of the total, significant trends (<0.05%) of 32% and 2% increasing and decreasing, respectively, were observed. The results of the FDC analysis indicated a decline in the annual and winter 10:90 exceedance ratio over the years for the rural and urban sub-watershed gauges. The BFI results show that the BFI of the rural areas was, on average, 18% higher than that of the urban areas. In addition, the RC also showed the influence of land-use and population changes on the watershed hydrology, as the RC for the urban gauge area was 19.3% higher than that for the rural area gauge. However, the difference in the RC was the lowest (5.8%) in the summer. Overall, the findings from this study highlight the annual, seasonal, and monthly changes in the temperature, precipitation, evapotranspiration, and streamflow in the watershed under study. Based on the available monitored data, it was difficult to quantify the changes in the streamflow over the decade which were attributable to population growth and land-cover use and management changes due to municipal official planning in the watershed.
first_indexed 2024-03-09T22:39:00Z
format Article
id doaj.art-bbb00589f57c462a8d0b978e2c08ce8b
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-09T22:39:00Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-bbb00589f57c462a8d0b978e2c08ce8b2023-11-23T18:44:13ZengMDPI AGAtmosphere2073-44332022-01-0113222510.3390/atmos13020225Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes WatershedElizabeth Philip0Ramesh P. Rudra1Pradeep K. Goel2Syed I. Ahmed3School of Engineering, University of Guelph, Guelph, ON N1G 2W1, CanadaSchool of Engineering, University of Guelph, Guelph, ON N1G 2W1, CanadaEnvironmental Monitoring and Reporting Branch, Ministry of the Environment, Conservation and Parks, Toronto, ON M9P 3V6, CanadaSchool of Engineering, University of Guelph, Guelph, ON N1G 2W1, CanadaClimate change and rapid urbanization could possibly increase the vulnerability of the Great Lakes Basin, Canada, which is the largest surface freshwater system in the world. This study explores the joint impact of climate change and land-use changes on the hydrology of a rapidly urbanizing Credit River watershed which lets out into Lake Ontario 25 km southwest of downtown Toronto, Ontario (ON), Canada; we began by classifying the watershed into urban and rural sections. A non-parametric Mann–Kendall test and the Sen slope estimator served to detect and describe the annual-, seasonal-, and monthly-scale trends in the climate variables (temperature, precipitation, and evapotranspiration), as well as the streamflow characteristics (median annual streamflow, baseflow, Runoff Coefficients (RC), Flow Duration Curve (FDC), Center of Volume (COV), and Peak Over Threshold (POT)) since 1916 for four rural and urban sub-watersheds. The temperature, precipitation and evapotranspiration (1950–2019) showed significant increasing trends for different months and seasons. Furthermore, the results indicated that the median annual streamflow, 7-day annual minimum flow, and days above normal are increasing; meanwhile, the annual maximum streamflow is decreasing. A total of 230 datasets were tested for their trends; of these, 80% and 20% increasing and decreasing trends were obtained, respectively. Of the total, significant trends (<0.05%) of 32% and 2% increasing and decreasing, respectively, were observed. The results of the FDC analysis indicated a decline in the annual and winter 10:90 exceedance ratio over the years for the rural and urban sub-watershed gauges. The BFI results show that the BFI of the rural areas was, on average, 18% higher than that of the urban areas. In addition, the RC also showed the influence of land-use and population changes on the watershed hydrology, as the RC for the urban gauge area was 19.3% higher than that for the rural area gauge. However, the difference in the RC was the lowest (5.8%) in the summer. Overall, the findings from this study highlight the annual, seasonal, and monthly changes in the temperature, precipitation, evapotranspiration, and streamflow in the watershed under study. Based on the available monitored data, it was difficult to quantify the changes in the streamflow over the decade which were attributable to population growth and land-cover use and management changes due to municipal official planning in the watershed.https://www.mdpi.com/2073-4433/13/2/225Great Lakesclimate changestreamflowland-cover changeurbanization
spellingShingle Elizabeth Philip
Ramesh P. Rudra
Pradeep K. Goel
Syed I. Ahmed
Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed
Atmosphere
Great Lakes
climate change
streamflow
land-cover change
urbanization
title Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed
title_full Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed
title_fullStr Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed
title_full_unstemmed Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed
title_short Investigation of the Long-Term Trends in the Streamflow Due to Climate Change and Urbanization for a Great Lakes Watershed
title_sort investigation of the long term trends in the streamflow due to climate change and urbanization for a great lakes watershed
topic Great Lakes
climate change
streamflow
land-cover change
urbanization
url https://www.mdpi.com/2073-4433/13/2/225
work_keys_str_mv AT elizabethphilip investigationofthelongtermtrendsinthestreamflowduetoclimatechangeandurbanizationforagreatlakeswatershed
AT rameshprudra investigationofthelongtermtrendsinthestreamflowduetoclimatechangeandurbanizationforagreatlakeswatershed
AT pradeepkgoel investigationofthelongtermtrendsinthestreamflowduetoclimatechangeandurbanizationforagreatlakeswatershed
AT syediahmed investigationofthelongtermtrendsinthestreamflowduetoclimatechangeandurbanizationforagreatlakeswatershed