Solution Spaces Associated to Continuous or Numerical Models for Which Integrable Functions Are Bounded

Boundedness is an essential feature of the solutions for various mathematical and numerical models in the natural sciences, especially those systems in which linear or nonlinear preservation or stability features are fundamental. In those cases, the boundedness of the solutions outside a set of zero...

Full description

Bibliographic Details
Main Authors: Brian Villegas-Villalpando, Jorge E. Macías-Díaz, Qin Sheng
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/11/1936
Description
Summary:Boundedness is an essential feature of the solutions for various mathematical and numerical models in the natural sciences, especially those systems in which linear or nonlinear preservation or stability features are fundamental. In those cases, the boundedness of the solutions outside a set of zero measures is not enough to guarantee that the solutions are physically relevant. In this note, we will establish a criterion for the boundedness of integrable solutions of general continuous and numerical systems. More precisely, we establish a characterization of those measures over arbitrary spaces for which real-valued integrable functions are necessarily bounded at every point of the domain. The main result states that the collection of measures for which all integrable functions are everywhere bounded are exactly all of those measures for which the infimum of the measures for nonempty sets is a positive extended real number.
ISSN:2227-7390