Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
Ustekinumab has shown efficacy in Crohn’s Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determin...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Journal of Clinical Medicine |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0383/11/15/4518 |
_version_ | 1797413410245181440 |
---|---|
author | María Chaparro Iria Baston-Rey Estela Fernández Salgado Javier González García Laura Ramos María Teresa Diz-Lois Palomares Federico Argüelles-Arias Eva Iglesias Flores Mercedes Cabello Saioa Rubio Iturria Andrea Núñez Ortiz Mara Charro Daniel Ginard Carmen Dueñas Sadornil Olga Merino Ochoa David Busquets Eduardo Iyo Ana Gutiérrez Casbas Patricia Ramírez de la Piscina Marta Maia Boscá-Watts Maite Arroyo María José García Esther Hinojosa Jordi Gordillo Pilar Martínez Montiel Benito Velayos Jiménez Cristina Quílez Ivorra Juan María Vázquez Morón José María Huguet Yago González-Lama Ana Isabel Muñagorri Santos Víctor Manuel Amo María Dolores Martín Arranz Fernando Bermejo Jesús Martínez Cadilla Cristina Rubín de Célix Paola Fradejas Salazar Antonio López San Román Nuria Jiménez Santiago García-López Anna Figuerola Itxaso Jiménez Francisco José Martínez Cerezo Carlos Taxonera Pilar Varela Ruth de Francisco David Monfort Gema Molina Arriero Alejandro Hernández-Camba Francisco Javier García Alonso Manuel Van Domselaar Ramón Pajares-Villarroya Alejandro Núñez Francisco Rodríguez Moranta Ignacio Marín-Jiménez Virginia Robles Alonso María del Mar Martín Rodríguez Patricia Camo-Monterde Iván García Tercero Mercedes Navarro-Llavat Lara Arias García Daniel Hervías Cruz Sebastian Kloss Alun Passey Cynthia Novella Eugenia Vispo Manuel Barreiro-de Acosta Javier P. Gisbert |
author_facet | María Chaparro Iria Baston-Rey Estela Fernández Salgado Javier González García Laura Ramos María Teresa Diz-Lois Palomares Federico Argüelles-Arias Eva Iglesias Flores Mercedes Cabello Saioa Rubio Iturria Andrea Núñez Ortiz Mara Charro Daniel Ginard Carmen Dueñas Sadornil Olga Merino Ochoa David Busquets Eduardo Iyo Ana Gutiérrez Casbas Patricia Ramírez de la Piscina Marta Maia Boscá-Watts Maite Arroyo María José García Esther Hinojosa Jordi Gordillo Pilar Martínez Montiel Benito Velayos Jiménez Cristina Quílez Ivorra Juan María Vázquez Morón José María Huguet Yago González-Lama Ana Isabel Muñagorri Santos Víctor Manuel Amo María Dolores Martín Arranz Fernando Bermejo Jesús Martínez Cadilla Cristina Rubín de Célix Paola Fradejas Salazar Antonio López San Román Nuria Jiménez Santiago García-López Anna Figuerola Itxaso Jiménez Francisco José Martínez Cerezo Carlos Taxonera Pilar Varela Ruth de Francisco David Monfort Gema Molina Arriero Alejandro Hernández-Camba Francisco Javier García Alonso Manuel Van Domselaar Ramón Pajares-Villarroya Alejandro Núñez Francisco Rodríguez Moranta Ignacio Marín-Jiménez Virginia Robles Alonso María del Mar Martín Rodríguez Patricia Camo-Monterde Iván García Tercero Mercedes Navarro-Llavat Lara Arias García Daniel Hervías Cruz Sebastian Kloss Alun Passey Cynthia Novella Eugenia Vispo Manuel Barreiro-de Acosta Javier P. Gisbert |
author_sort | María Chaparro |
collection | DOAJ |
description | Ustekinumab has shown efficacy in Crohn’s Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients’ data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index ≤ 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission. |
first_indexed | 2024-03-09T05:18:28Z |
format | Article |
id | doaj.art-bbc704ff26a449c5831cf6c241ff6dbe |
institution | Directory Open Access Journal |
issn | 2077-0383 |
language | English |
last_indexed | 2024-03-09T05:18:28Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Journal of Clinical Medicine |
spelling | doaj.art-bbc704ff26a449c5831cf6c241ff6dbe2023-12-03T12:43:47ZengMDPI AGJournal of Clinical Medicine2077-03832022-08-011115451810.3390/jcm11154518Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on UstekinumabMaría Chaparro0Iria Baston-Rey1Estela Fernández Salgado2Javier González García3Laura Ramos4María Teresa Diz-Lois Palomares5Federico Argüelles-Arias6Eva Iglesias Flores7Mercedes Cabello8Saioa Rubio Iturria9Andrea Núñez Ortiz10Mara Charro11Daniel Ginard12Carmen Dueñas Sadornil13Olga Merino Ochoa14David Busquets15Eduardo Iyo16Ana Gutiérrez Casbas17Patricia Ramírez de la Piscina18Marta Maia Boscá-Watts19Maite Arroyo20María José García21Esther Hinojosa22Jordi Gordillo23Pilar Martínez Montiel24Benito Velayos Jiménez25Cristina Quílez Ivorra26Juan María Vázquez Morón27José María Huguet28Yago González-Lama29Ana Isabel Muñagorri Santos30Víctor Manuel Amo31María Dolores Martín Arranz32Fernando Bermejo33Jesús Martínez Cadilla34Cristina Rubín de Célix35Paola Fradejas Salazar36Antonio López San Román37Nuria Jiménez38Santiago García-López39Anna Figuerola40Itxaso Jiménez41Francisco José Martínez Cerezo42Carlos Taxonera43Pilar Varela44Ruth de Francisco45David Monfort46Gema Molina Arriero47Alejandro Hernández-Camba48Francisco Javier García Alonso49Manuel Van Domselaar50Ramón Pajares-Villarroya51Alejandro Núñez52Francisco Rodríguez Moranta53Ignacio Marín-Jiménez54Virginia Robles Alonso55María del Mar Martín Rodríguez56Patricia Camo-Monterde57Iván García Tercero58Mercedes Navarro-Llavat59Lara Arias García60Daniel Hervías Cruz61Sebastian Kloss62Alun Passey63Cynthia Novella64Eugenia Vispo65Manuel Barreiro-de Acosta66Javier P. Gisbert67Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, SpainComplejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, SpainComplejo Hospitalario de Pontevedra, 36164 Pontevedra, SpainHospital Público Comarcal la Inmaculada, 04600 Almería, SpainHospital Universitario de Canarias, 38320 Tenerife, SpainHospital Universitario A Coruña, 15006 A Coruña, SpainHospital Universitario Virgen Macarena, 41009 Seville, SpainHospital Universitario Reina Sofía, 14004 Córdoba, SpainHospital Universitario Virgen de Valme, 41014 Seville, SpainComplejo Hospitalario de Navarra, 31008 Pamplona, SpainHospital Universitario Virgen del Rocío, 41013 Seville, SpainHospital de Barbastro, 22300 Barbastro, SpainHospital Universitario Son Espases, 07120 Palma, SpainHospital San Pedro de Alcántara, 10003 Cáceres, SpainHospital Universitario Cruces, 48903 Barakaldo, SpainHospital Universitari de Girona Doctor Josep Trueta, 17007 Girona, SpainHospital Comarcal de Inca, 07300 Inca, SpainCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, SpainHospital Universitario de Araba-Txagorritxu, 01004 Vitoria-Gasteiz, SpainHospital Clínico Universitario de Valencia, 46010 Valencia, SpainHospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, SpainHospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, SpainHospital de Manises, 46940 Manises, SpainHospital de la Santa Creu i Sant Pau, 08041 Barcelona, SpainHospital Universitario 12 de Octubre, 28041 Madrid, SpainHospital Clínico Universitario de Valladolid, 47003 Valladolid, SpainHospital Marina Baixa, 03570 Villajoyosa, SpainHospital Universitario Juan Ramón Jiménez, 21002 Huelva, SpainHospital General Universitario de Valencia, 46014 Valencia, SpainHospital Universitario Puerta de Hierro, 28222 Majadahonda, SpainHospital Universitario de Donostia, 20014 Donostia-San Sebastián, SpainHospital Regional de Málaga, 29010 Málaga, SpainHospital Universitario de La Paz, 28046 Madrid, SpainInstituto de Investigación Sanitaria del Hospital La Paz (IdiPaz), 28046 Madrid, SpainHospital Alvaro Cunqueiro, 36213 Vigo, SpainHospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, SpainHospital Virgen de la Concha, 49022 Zamora, SpainHospital Universitario Ramón y Cajal, 28034 Madrid, SpainHospital General Universitario de Elche, 03203 Elche, SpainHospital Universitario Miguel Servet, 50009 Zaragoza, SpainHospital General Universitario de Castellón, 12004 Castellón de la Plana, SpainHospital Universitario de Galdakao-Usansolo, 48960 Galdakao, SpainHospital Universitario Sant Joan de Reus, 43204 Reus, SpainHospital Clínico Universitario San Carlos, Instituto de Investigación del Hospital Clínico San Carlos [IdISSC], 28040 Madrid, SpainHospital Universitario de Cabueñes, 33203 Gijón, SpainHospital Universitario Central de Asturias, Instituto de Investigación Biosanitaria del Principado de Asturias [ISPA], 33011 Oviedo, SpainConsorci Sanitari de Terrassa, 08227 Terrassa, SpainComplejo Hospitalario Universitario de Ferrol, 15405 Ferrol, SpainHospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, SpainHospital Universitario Rio Hortega, 47012 Valladolid, SpainHospital Universitario de Torrejón, 28850 Torrejón de Ardoz, SpainHospital Universitario Infanta Sofía, 28702 San Sebastián de los Reyes, SpainHospital Clínico Universitario de Salamanca, 37007 Salamanca, SpainHospital Universitario Bellvitge, 08907 L’Hospitalet de Llobregat, SpainHospital Universitario Gregorio Marañón, 28009 Madrid, SpainHospital Universitario Vall d’Hebrón, 08035 Barcelona, SpainHospital Universitario Virgen de las Nieves, 18014 Granada, SpainHospital Universitario San Jorge, 22004 Huesca, SpainHospital General Universitario Santa Lucía, 30202 Cartagena, SpainHospital de Sant Joan Despí Moisès Broggi, 08970 Sant Joan Despí, SpainHospital Universitario de Burgos, 09006 Burgos, SpainHospital General Universitario de Ciudad Real, 13005 Ciudad Real, SpainJanssen, EMEA, 2340 Beerse, BelgiumJanssen, EMEA, 2340 Beerse, BelgiumJanssen Medical Department, Paseo Doce Estrellas, 5-7, 28042 Madrid, SpainJanssen Medical Department, Paseo Doce Estrellas, 5-7, 28042 Madrid, SpainComplejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, SpainHospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, SpainUstekinumab has shown efficacy in Crohn’s Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients’ data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index ≤ 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission.https://www.mdpi.com/2077-0383/11/15/4518Crohn’s Diseaseustekinumabpredictive factors |
spellingShingle | María Chaparro Iria Baston-Rey Estela Fernández Salgado Javier González García Laura Ramos María Teresa Diz-Lois Palomares Federico Argüelles-Arias Eva Iglesias Flores Mercedes Cabello Saioa Rubio Iturria Andrea Núñez Ortiz Mara Charro Daniel Ginard Carmen Dueñas Sadornil Olga Merino Ochoa David Busquets Eduardo Iyo Ana Gutiérrez Casbas Patricia Ramírez de la Piscina Marta Maia Boscá-Watts Maite Arroyo María José García Esther Hinojosa Jordi Gordillo Pilar Martínez Montiel Benito Velayos Jiménez Cristina Quílez Ivorra Juan María Vázquez Morón José María Huguet Yago González-Lama Ana Isabel Muñagorri Santos Víctor Manuel Amo María Dolores Martín Arranz Fernando Bermejo Jesús Martínez Cadilla Cristina Rubín de Célix Paola Fradejas Salazar Antonio López San Román Nuria Jiménez Santiago García-López Anna Figuerola Itxaso Jiménez Francisco José Martínez Cerezo Carlos Taxonera Pilar Varela Ruth de Francisco David Monfort Gema Molina Arriero Alejandro Hernández-Camba Francisco Javier García Alonso Manuel Van Domselaar Ramón Pajares-Villarroya Alejandro Núñez Francisco Rodríguez Moranta Ignacio Marín-Jiménez Virginia Robles Alonso María del Mar Martín Rodríguez Patricia Camo-Monterde Iván García Tercero Mercedes Navarro-Llavat Lara Arias García Daniel Hervías Cruz Sebastian Kloss Alun Passey Cynthia Novella Eugenia Vispo Manuel Barreiro-de Acosta Javier P. Gisbert Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab Journal of Clinical Medicine Crohn’s Disease ustekinumab predictive factors |
title | Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab |
title_full | Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab |
title_fullStr | Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab |
title_full_unstemmed | Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab |
title_short | Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab |
title_sort | using interpretable machine learning to identify baseline predictive factors of remission and drug durability in crohn s disease patients on ustekinumab |
topic | Crohn’s Disease ustekinumab predictive factors |
url | https://www.mdpi.com/2077-0383/11/15/4518 |
work_keys_str_mv | AT mariachaparro usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT iriabastonrey usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT estelafernandezsalgado usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT javiergonzalezgarcia usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT lauraramos usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT mariateresadizloispalomares usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT federicoarguellesarias usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT evaiglesiasflores usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT mercedescabello usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT saioarubioiturria usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT andreanunezortiz usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT maracharro usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT danielginard usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT carmenduenassadornil usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT olgamerinoochoa usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT davidbusquets usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT eduardoiyo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT anagutierrezcasbas usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT patriciaramirezdelapiscina usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT martamaiaboscawatts usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT maitearroyo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT mariajosegarcia usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT estherhinojosa usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT jordigordillo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT pilarmartinezmontiel usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT benitovelayosjimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT cristinaquilezivorra usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT juanmariavazquezmoron usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT josemariahuguet usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT yagogonzalezlama usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT anaisabelmunagorrisantos usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT victormanuelamo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT mariadoloresmartinarranz usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT fernandobermejo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT jesusmartinezcadilla usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT cristinarubindecelix usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT paolafradejassalazar usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT antoniolopezsanroman usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT nuriajimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT santiagogarcialopez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT annafiguerola usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT itxasojimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT franciscojosemartinezcerezo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT carlostaxonera usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT pilarvarela usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT ruthdefrancisco usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT davidmonfort usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT gemamolinaarriero usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT alejandrohernandezcamba usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT franciscojaviergarciaalonso usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT manuelvandomselaar usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT ramonpajaresvillarroya usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT alejandronunez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT franciscorodriguezmoranta usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT ignaciomarinjimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT virginiaroblesalonso usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT mariadelmarmartinrodriguez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT patriciacamomonterde usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT ivangarciatercero usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT mercedesnavarrollavat usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT laraariasgarcia usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT danielherviascruz usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT sebastiankloss usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT alunpassey usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT cynthianovella usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT eugeniavispo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT manuelbarreirodeacosta usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab AT javierpgisbert usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab |