Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab

Ustekinumab has shown efficacy in Crohn’s Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determin...

Full description

Bibliographic Details
Main Authors: María Chaparro, Iria Baston-Rey, Estela Fernández Salgado, Javier González García, Laura Ramos, María Teresa Diz-Lois Palomares, Federico Argüelles-Arias, Eva Iglesias Flores, Mercedes Cabello, Saioa Rubio Iturria, Andrea Núñez Ortiz, Mara Charro, Daniel Ginard, Carmen Dueñas Sadornil, Olga Merino Ochoa, David Busquets, Eduardo Iyo, Ana Gutiérrez Casbas, Patricia Ramírez de la Piscina, Marta Maia Boscá-Watts, Maite Arroyo, María José García, Esther Hinojosa, Jordi Gordillo, Pilar Martínez Montiel, Benito Velayos Jiménez, Cristina Quílez Ivorra, Juan María Vázquez Morón, José María Huguet, Yago González-Lama, Ana Isabel Muñagorri Santos, Víctor Manuel Amo, María Dolores Martín Arranz, Fernando Bermejo, Jesús Martínez Cadilla, Cristina Rubín de Célix, Paola Fradejas Salazar, Antonio López San Román, Nuria Jiménez, Santiago García-López, Anna Figuerola, Itxaso Jiménez, Francisco José Martínez Cerezo, Carlos Taxonera, Pilar Varela, Ruth de Francisco, David Monfort, Gema Molina Arriero, Alejandro Hernández-Camba, Francisco Javier García Alonso, Manuel Van Domselaar, Ramón Pajares-Villarroya, Alejandro Núñez, Francisco Rodríguez Moranta, Ignacio Marín-Jiménez, Virginia Robles Alonso, María del Mar Martín Rodríguez, Patricia Camo-Monterde, Iván García Tercero, Mercedes Navarro-Llavat, Lara Arias García, Daniel Hervías Cruz, Sebastian Kloss, Alun Passey, Cynthia Novella, Eugenia Vispo, Manuel Barreiro-de Acosta, Javier P. Gisbert
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/11/15/4518
_version_ 1797413410245181440
author María Chaparro
Iria Baston-Rey
Estela Fernández Salgado
Javier González García
Laura Ramos
María Teresa Diz-Lois Palomares
Federico Argüelles-Arias
Eva Iglesias Flores
Mercedes Cabello
Saioa Rubio Iturria
Andrea Núñez Ortiz
Mara Charro
Daniel Ginard
Carmen Dueñas Sadornil
Olga Merino Ochoa
David Busquets
Eduardo Iyo
Ana Gutiérrez Casbas
Patricia Ramírez de la Piscina
Marta Maia Boscá-Watts
Maite Arroyo
María José García
Esther Hinojosa
Jordi Gordillo
Pilar Martínez Montiel
Benito Velayos Jiménez
Cristina Quílez Ivorra
Juan María Vázquez Morón
José María Huguet
Yago González-Lama
Ana Isabel Muñagorri Santos
Víctor Manuel Amo
María Dolores Martín Arranz
Fernando Bermejo
Jesús Martínez Cadilla
Cristina Rubín de Célix
Paola Fradejas Salazar
Antonio López San Román
Nuria Jiménez
Santiago García-López
Anna Figuerola
Itxaso Jiménez
Francisco José Martínez Cerezo
Carlos Taxonera
Pilar Varela
Ruth de Francisco
David Monfort
Gema Molina Arriero
Alejandro Hernández-Camba
Francisco Javier García Alonso
Manuel Van Domselaar
Ramón Pajares-Villarroya
Alejandro Núñez
Francisco Rodríguez Moranta
Ignacio Marín-Jiménez
Virginia Robles Alonso
María del Mar Martín Rodríguez
Patricia Camo-Monterde
Iván García Tercero
Mercedes Navarro-Llavat
Lara Arias García
Daniel Hervías Cruz
Sebastian Kloss
Alun Passey
Cynthia Novella
Eugenia Vispo
Manuel Barreiro-de Acosta
Javier P. Gisbert
author_facet María Chaparro
Iria Baston-Rey
Estela Fernández Salgado
Javier González García
Laura Ramos
María Teresa Diz-Lois Palomares
Federico Argüelles-Arias
Eva Iglesias Flores
Mercedes Cabello
Saioa Rubio Iturria
Andrea Núñez Ortiz
Mara Charro
Daniel Ginard
Carmen Dueñas Sadornil
Olga Merino Ochoa
David Busquets
Eduardo Iyo
Ana Gutiérrez Casbas
Patricia Ramírez de la Piscina
Marta Maia Boscá-Watts
Maite Arroyo
María José García
Esther Hinojosa
Jordi Gordillo
Pilar Martínez Montiel
Benito Velayos Jiménez
Cristina Quílez Ivorra
Juan María Vázquez Morón
José María Huguet
Yago González-Lama
Ana Isabel Muñagorri Santos
Víctor Manuel Amo
María Dolores Martín Arranz
Fernando Bermejo
Jesús Martínez Cadilla
Cristina Rubín de Célix
Paola Fradejas Salazar
Antonio López San Román
Nuria Jiménez
Santiago García-López
Anna Figuerola
Itxaso Jiménez
Francisco José Martínez Cerezo
Carlos Taxonera
Pilar Varela
Ruth de Francisco
David Monfort
Gema Molina Arriero
Alejandro Hernández-Camba
Francisco Javier García Alonso
Manuel Van Domselaar
Ramón Pajares-Villarroya
Alejandro Núñez
Francisco Rodríguez Moranta
Ignacio Marín-Jiménez
Virginia Robles Alonso
María del Mar Martín Rodríguez
Patricia Camo-Monterde
Iván García Tercero
Mercedes Navarro-Llavat
Lara Arias García
Daniel Hervías Cruz
Sebastian Kloss
Alun Passey
Cynthia Novella
Eugenia Vispo
Manuel Barreiro-de Acosta
Javier P. Gisbert
author_sort María Chaparro
collection DOAJ
description Ustekinumab has shown efficacy in Crohn’s Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients’ data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index ≤ 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission.
first_indexed 2024-03-09T05:18:28Z
format Article
id doaj.art-bbc704ff26a449c5831cf6c241ff6dbe
institution Directory Open Access Journal
issn 2077-0383
language English
last_indexed 2024-03-09T05:18:28Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Journal of Clinical Medicine
spelling doaj.art-bbc704ff26a449c5831cf6c241ff6dbe2023-12-03T12:43:47ZengMDPI AGJournal of Clinical Medicine2077-03832022-08-011115451810.3390/jcm11154518Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on UstekinumabMaría Chaparro0Iria Baston-Rey1Estela Fernández Salgado2Javier González García3Laura Ramos4María Teresa Diz-Lois Palomares5Federico Argüelles-Arias6Eva Iglesias Flores7Mercedes Cabello8Saioa Rubio Iturria9Andrea Núñez Ortiz10Mara Charro11Daniel Ginard12Carmen Dueñas Sadornil13Olga Merino Ochoa14David Busquets15Eduardo Iyo16Ana Gutiérrez Casbas17Patricia Ramírez de la Piscina18Marta Maia Boscá-Watts19Maite Arroyo20María José García21Esther Hinojosa22Jordi Gordillo23Pilar Martínez Montiel24Benito Velayos Jiménez25Cristina Quílez Ivorra26Juan María Vázquez Morón27José María Huguet28Yago González-Lama29Ana Isabel Muñagorri Santos30Víctor Manuel Amo31María Dolores Martín Arranz32Fernando Bermejo33Jesús Martínez Cadilla34Cristina Rubín de Célix35Paola Fradejas Salazar36Antonio López San Román37Nuria Jiménez38Santiago García-López39Anna Figuerola40Itxaso Jiménez41Francisco José Martínez Cerezo42Carlos Taxonera43Pilar Varela44Ruth de Francisco45David Monfort46Gema Molina Arriero47Alejandro Hernández-Camba48Francisco Javier García Alonso49Manuel Van Domselaar50Ramón Pajares-Villarroya51Alejandro Núñez52Francisco Rodríguez Moranta53Ignacio Marín-Jiménez54Virginia Robles Alonso55María del Mar Martín Rodríguez56Patricia Camo-Monterde57Iván García Tercero58Mercedes Navarro-Llavat59Lara Arias García60Daniel Hervías Cruz61Sebastian Kloss62Alun Passey63Cynthia Novella64Eugenia Vispo65Manuel Barreiro-de Acosta66Javier P. Gisbert67Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, SpainComplejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, SpainComplejo Hospitalario de Pontevedra, 36164 Pontevedra, SpainHospital Público Comarcal la Inmaculada, 04600 Almería, SpainHospital Universitario de Canarias, 38320 Tenerife, SpainHospital Universitario A Coruña, 15006 A Coruña, SpainHospital Universitario Virgen Macarena, 41009 Seville, SpainHospital Universitario Reina Sofía, 14004 Córdoba, SpainHospital Universitario Virgen de Valme, 41014 Seville, SpainComplejo Hospitalario de Navarra, 31008 Pamplona, SpainHospital Universitario Virgen del Rocío, 41013 Seville, SpainHospital de Barbastro, 22300 Barbastro, SpainHospital Universitario Son Espases, 07120 Palma, SpainHospital San Pedro de Alcántara, 10003 Cáceres, SpainHospital Universitario Cruces, 48903 Barakaldo, SpainHospital Universitari de Girona Doctor Josep Trueta, 17007 Girona, SpainHospital Comarcal de Inca, 07300 Inca, SpainCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, SpainHospital Universitario de Araba-Txagorritxu, 01004 Vitoria-Gasteiz, SpainHospital Clínico Universitario de Valencia, 46010 Valencia, SpainHospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, SpainHospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, SpainHospital de Manises, 46940 Manises, SpainHospital de la Santa Creu i Sant Pau, 08041 Barcelona, SpainHospital Universitario 12 de Octubre, 28041 Madrid, SpainHospital Clínico Universitario de Valladolid, 47003 Valladolid, SpainHospital Marina Baixa, 03570 Villajoyosa, SpainHospital Universitario Juan Ramón Jiménez, 21002 Huelva, SpainHospital General Universitario de Valencia, 46014 Valencia, SpainHospital Universitario Puerta de Hierro, 28222 Majadahonda, SpainHospital Universitario de Donostia, 20014 Donostia-San Sebastián, SpainHospital Regional de Málaga, 29010 Málaga, SpainHospital Universitario de La Paz, 28046 Madrid, SpainInstituto de Investigación Sanitaria del Hospital La Paz (IdiPaz), 28046 Madrid, SpainHospital Alvaro Cunqueiro, 36213 Vigo, SpainHospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, SpainHospital Virgen de la Concha, 49022 Zamora, SpainHospital Universitario Ramón y Cajal, 28034 Madrid, SpainHospital General Universitario de Elche, 03203 Elche, SpainHospital Universitario Miguel Servet, 50009 Zaragoza, SpainHospital General Universitario de Castellón, 12004 Castellón de la Plana, SpainHospital Universitario de Galdakao-Usansolo, 48960 Galdakao, SpainHospital Universitario Sant Joan de Reus, 43204 Reus, SpainHospital Clínico Universitario San Carlos, Instituto de Investigación del Hospital Clínico San Carlos [IdISSC], 28040 Madrid, SpainHospital Universitario de Cabueñes, 33203 Gijón, SpainHospital Universitario Central de Asturias, Instituto de Investigación Biosanitaria del Principado de Asturias [ISPA], 33011 Oviedo, SpainConsorci Sanitari de Terrassa, 08227 Terrassa, SpainComplejo Hospitalario Universitario de Ferrol, 15405 Ferrol, SpainHospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, SpainHospital Universitario Rio Hortega, 47012 Valladolid, SpainHospital Universitario de Torrejón, 28850 Torrejón de Ardoz, SpainHospital Universitario Infanta Sofía, 28702 San Sebastián de los Reyes, SpainHospital Clínico Universitario de Salamanca, 37007 Salamanca, SpainHospital Universitario Bellvitge, 08907 L’Hospitalet de Llobregat, SpainHospital Universitario Gregorio Marañón, 28009 Madrid, SpainHospital Universitario Vall d’Hebrón, 08035 Barcelona, SpainHospital Universitario Virgen de las Nieves, 18014 Granada, SpainHospital Universitario San Jorge, 22004 Huesca, SpainHospital General Universitario Santa Lucía, 30202 Cartagena, SpainHospital de Sant Joan Despí Moisès Broggi, 08970 Sant Joan Despí, SpainHospital Universitario de Burgos, 09006 Burgos, SpainHospital General Universitario de Ciudad Real, 13005 Ciudad Real, SpainJanssen, EMEA, 2340 Beerse, BelgiumJanssen, EMEA, 2340 Beerse, BelgiumJanssen Medical Department, Paseo Doce Estrellas, 5-7, 28042 Madrid, SpainJanssen Medical Department, Paseo Doce Estrellas, 5-7, 28042 Madrid, SpainComplejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, SpainHospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, SpainUstekinumab has shown efficacy in Crohn’s Disease (CD) patients. To identify patient profiles of those who benefit the most from this treatment would help to position this drug in the therapeutic paradigm of CD and generate hypotheses for future trials. The objective of this analysis was to determine whether baseline patient characteristics are predictive of remission and the drug durability of ustekinumab, and whether its positioning with respect to prior use of biologics has a significant effect after correcting for disease severity and phenotype at baseline using interpretable machine learning. Patients’ data from SUSTAIN, a retrospective multicenter single-arm cohort study, were used. Disease phenotype, baseline laboratory data, and prior treatment characteristics were documented. Clinical remission was defined as the Harvey Bradshaw Index ≤ 4 and was tracked longitudinally. Drug durability was defined as the time until a patient discontinued treatment. A total of 439 participants from 60 centers were included and a total of 20 baseline covariates considered. Less exposure to previous biologics had a positive effect on remission, even after controlling for baseline disease severity using a non-linear, additive, multivariable model. Additionally, age, body mass index, and fecal calprotectin at baseline were found to be statistically significant as independent negative risk factors for both remission and drug survival, with further risk factors identified for remission.https://www.mdpi.com/2077-0383/11/15/4518Crohn’s Diseaseustekinumabpredictive factors
spellingShingle María Chaparro
Iria Baston-Rey
Estela Fernández Salgado
Javier González García
Laura Ramos
María Teresa Diz-Lois Palomares
Federico Argüelles-Arias
Eva Iglesias Flores
Mercedes Cabello
Saioa Rubio Iturria
Andrea Núñez Ortiz
Mara Charro
Daniel Ginard
Carmen Dueñas Sadornil
Olga Merino Ochoa
David Busquets
Eduardo Iyo
Ana Gutiérrez Casbas
Patricia Ramírez de la Piscina
Marta Maia Boscá-Watts
Maite Arroyo
María José García
Esther Hinojosa
Jordi Gordillo
Pilar Martínez Montiel
Benito Velayos Jiménez
Cristina Quílez Ivorra
Juan María Vázquez Morón
José María Huguet
Yago González-Lama
Ana Isabel Muñagorri Santos
Víctor Manuel Amo
María Dolores Martín Arranz
Fernando Bermejo
Jesús Martínez Cadilla
Cristina Rubín de Célix
Paola Fradejas Salazar
Antonio López San Román
Nuria Jiménez
Santiago García-López
Anna Figuerola
Itxaso Jiménez
Francisco José Martínez Cerezo
Carlos Taxonera
Pilar Varela
Ruth de Francisco
David Monfort
Gema Molina Arriero
Alejandro Hernández-Camba
Francisco Javier García Alonso
Manuel Van Domselaar
Ramón Pajares-Villarroya
Alejandro Núñez
Francisco Rodríguez Moranta
Ignacio Marín-Jiménez
Virginia Robles Alonso
María del Mar Martín Rodríguez
Patricia Camo-Monterde
Iván García Tercero
Mercedes Navarro-Llavat
Lara Arias García
Daniel Hervías Cruz
Sebastian Kloss
Alun Passey
Cynthia Novella
Eugenia Vispo
Manuel Barreiro-de Acosta
Javier P. Gisbert
Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
Journal of Clinical Medicine
Crohn’s Disease
ustekinumab
predictive factors
title Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
title_full Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
title_fullStr Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
title_full_unstemmed Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
title_short Using Interpretable Machine Learning to Identify Baseline Predictive Factors of Remission and Drug Durability in Crohn’s Disease Patients on Ustekinumab
title_sort using interpretable machine learning to identify baseline predictive factors of remission and drug durability in crohn s disease patients on ustekinumab
topic Crohn’s Disease
ustekinumab
predictive factors
url https://www.mdpi.com/2077-0383/11/15/4518
work_keys_str_mv AT mariachaparro usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT iriabastonrey usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT estelafernandezsalgado usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT javiergonzalezgarcia usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT lauraramos usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT mariateresadizloispalomares usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT federicoarguellesarias usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT evaiglesiasflores usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT mercedescabello usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT saioarubioiturria usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT andreanunezortiz usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT maracharro usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT danielginard usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT carmenduenassadornil usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT olgamerinoochoa usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT davidbusquets usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT eduardoiyo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT anagutierrezcasbas usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT patriciaramirezdelapiscina usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT martamaiaboscawatts usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT maitearroyo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT mariajosegarcia usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT estherhinojosa usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT jordigordillo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT pilarmartinezmontiel usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT benitovelayosjimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT cristinaquilezivorra usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT juanmariavazquezmoron usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT josemariahuguet usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT yagogonzalezlama usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT anaisabelmunagorrisantos usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT victormanuelamo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT mariadoloresmartinarranz usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT fernandobermejo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT jesusmartinezcadilla usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT cristinarubindecelix usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT paolafradejassalazar usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT antoniolopezsanroman usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT nuriajimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT santiagogarcialopez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT annafiguerola usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT itxasojimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT franciscojosemartinezcerezo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT carlostaxonera usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT pilarvarela usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT ruthdefrancisco usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT davidmonfort usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT gemamolinaarriero usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT alejandrohernandezcamba usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT franciscojaviergarciaalonso usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT manuelvandomselaar usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT ramonpajaresvillarroya usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT alejandronunez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT franciscorodriguezmoranta usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT ignaciomarinjimenez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT virginiaroblesalonso usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT mariadelmarmartinrodriguez usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT patriciacamomonterde usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT ivangarciatercero usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT mercedesnavarrollavat usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT laraariasgarcia usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT danielherviascruz usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT sebastiankloss usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT alunpassey usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT cynthianovella usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT eugeniavispo usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT manuelbarreirodeacosta usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab
AT javierpgisbert usinginterpretablemachinelearningtoidentifybaselinepredictivefactorsofremissionanddrugdurabilityincrohnsdiseasepatientsonustekinumab