A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.

Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effecti...

Full description

Bibliographic Details
Main Authors: Hans M Dalton, Raghuvir Viswanatha, Roderick Brathwaite, Jae Sophia Zuno, Alexys R Berman, Rebekah Rushforth, Stephanie E Mohr, Norbert Perrimon, Clement Y Chow
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-09-01
Series:PLoS Genetics
Online Access:https://doi.org/10.1371/journal.pgen.1010430
_version_ 1828004345169313792
author Hans M Dalton
Raghuvir Viswanatha
Roderick Brathwaite
Jae Sophia Zuno
Alexys R Berman
Rebekah Rushforth
Stephanie E Mohr
Norbert Perrimon
Clement Y Chow
author_facet Hans M Dalton
Raghuvir Viswanatha
Roderick Brathwaite
Jae Sophia Zuno
Alexys R Berman
Rebekah Rushforth
Stephanie E Mohr
Norbert Perrimon
Clement Y Chow
author_sort Hans M Dalton
collection DOAJ
description Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
first_indexed 2024-04-10T07:13:17Z
format Article
id doaj.art-bbc74efb857641bd92e0108b5c183c6e
institution Directory Open Access Journal
issn 1553-7390
1553-7404
language English
last_indexed 2024-04-10T07:13:17Z
publishDate 2022-09-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Genetics
spelling doaj.art-bbc74efb857641bd92e0108b5c183c6e2023-02-26T05:31:22ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042022-09-01189e101043010.1371/journal.pgen.1010430A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.Hans M DaltonRaghuvir ViswanathaRoderick BrathwaiteJae Sophia ZunoAlexys R BermanRebekah RushforthStephanie E MohrNorbert PerrimonClement Y ChowPartial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.https://doi.org/10.1371/journal.pgen.1010430
spellingShingle Hans M Dalton
Raghuvir Viswanatha
Roderick Brathwaite
Jae Sophia Zuno
Alexys R Berman
Rebekah Rushforth
Stephanie E Mohr
Norbert Perrimon
Clement Y Chow
A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.
PLoS Genetics
title A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.
title_full A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.
title_fullStr A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.
title_full_unstemmed A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.
title_short A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.
title_sort genome wide crispr screen identifies dpm1 as a modifier of dpagt1 deficiency and er stress
url https://doi.org/10.1371/journal.pgen.1010430
work_keys_str_mv AT hansmdalton agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT raghuvirviswanatha agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT roderickbrathwaite agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT jaesophiazuno agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT alexysrberman agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT rebekahrushforth agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT stephanieemohr agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT norbertperrimon agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT clementychow agenomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT hansmdalton genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT raghuvirviswanatha genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT roderickbrathwaite genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT jaesophiazuno genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT alexysrberman genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT rebekahrushforth genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT stephanieemohr genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT norbertperrimon genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress
AT clementychow genomewidecrisprscreenidentifiesdpm1asamodifierofdpagt1deficiencyanderstress