Eigenvalues of Sturm-Liouville operators and prime numbers

We show that there is no function $q(x)\in L_2(0,1)$ which is the potential of a Sturm-Liouville problem with Dirichlet boundary condition whose spectrum is a set depending nonlinearly on the set of prime numbers as suggested by Mingarelli [7].

Bibliographic Details
Main Authors: Rauf Amirov, Ibrahim Adalar
Format: Article
Language:English
Published: Texas State University 2017-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/50/abstr.html
_version_ 1818274831073804288
author Rauf Amirov
Ibrahim Adalar
author_facet Rauf Amirov
Ibrahim Adalar
author_sort Rauf Amirov
collection DOAJ
description We show that there is no function $q(x)\in L_2(0,1)$ which is the potential of a Sturm-Liouville problem with Dirichlet boundary condition whose spectrum is a set depending nonlinearly on the set of prime numbers as suggested by Mingarelli [7].
first_indexed 2024-12-12T22:20:06Z
format Article
id doaj.art-bbcaf2523dea48f59a0907911fd0da21
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-12T22:20:06Z
publishDate 2017-02-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-bbcaf2523dea48f59a0907911fd0da212022-12-22T00:09:56ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-02-01201750,13Eigenvalues of Sturm-Liouville operators and prime numbersRauf Amirov0Ibrahim Adalar1 Cumhuriyet Univ., 58140 Sivas, Turkey Cumhuriyet Univ., Zara/Sivas, Turkey We show that there is no function $q(x)\in L_2(0,1)$ which is the potential of a Sturm-Liouville problem with Dirichlet boundary condition whose spectrum is a set depending nonlinearly on the set of prime numbers as suggested by Mingarelli [7].http://ejde.math.txstate.edu/Volumes/2017/50/abstr.htmlSturm-Liouvillespectrumprime numbers
spellingShingle Rauf Amirov
Ibrahim Adalar
Eigenvalues of Sturm-Liouville operators and prime numbers
Electronic Journal of Differential Equations
Sturm-Liouville
spectrum
prime numbers
title Eigenvalues of Sturm-Liouville operators and prime numbers
title_full Eigenvalues of Sturm-Liouville operators and prime numbers
title_fullStr Eigenvalues of Sturm-Liouville operators and prime numbers
title_full_unstemmed Eigenvalues of Sturm-Liouville operators and prime numbers
title_short Eigenvalues of Sturm-Liouville operators and prime numbers
title_sort eigenvalues of sturm liouville operators and prime numbers
topic Sturm-Liouville
spectrum
prime numbers
url http://ejde.math.txstate.edu/Volumes/2017/50/abstr.html
work_keys_str_mv AT raufamirov eigenvaluesofsturmliouvilleoperatorsandprimenumbers
AT ibrahimadalar eigenvaluesofsturmliouvilleoperatorsandprimenumbers