A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications

We present a novel result that, in a certain sense, generalizes the Arzelà-Ascoli theorem.  Our main tool will be the so called degree of nondensifiability, which is not a measure of noncompactness but canbe used as  an  alternative tool  in  certain  fixed problems where such  measures do  not  wor...

Full description

Bibliographic Details
Main Author: G. García
Format: Article
Language:English
Published: Universitat Politècnica de València 2019-04-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/10930
_version_ 1818427554679226368
author G. García
author_facet G. García
author_sort G. García
collection DOAJ
description We present a novel result that, in a certain sense, generalizes the Arzelà-Ascoli theorem.  Our main tool will be the so called degree of nondensifiability, which is not a measure of noncompactness but canbe used as  an  alternative tool  in  certain  fixed problems where such  measures do  not  work  out.   To  justify  our  results,  we  analyze  the  existence  of continuous solutions  of certain  Volterra integral  equations defined by vector valued functions.
first_indexed 2024-12-14T14:47:35Z
format Article
id doaj.art-bbcd97a8defa471d940dd16abe51ebe3
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-12-14T14:47:35Z
publishDate 2019-04-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-bbcd97a8defa471d940dd16abe51ebe32022-12-21T22:57:14ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472019-04-0120126527910.4995/agt.2019.109307399A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applicationsG. García0UNEDWe present a novel result that, in a certain sense, generalizes the Arzelà-Ascoli theorem.  Our main tool will be the so called degree of nondensifiability, which is not a measure of noncompactness but canbe used as  an  alternative tool  in  certain  fixed problems where such  measures do  not  work  out.   To  justify  our  results,  we  analyze  the  existence  of continuous solutions  of certain  Volterra integral  equations defined by vector valued functions.https://polipapers.upv.es/index.php/AGT/article/view/10930Arzelà-Ascoli theoremdegree of nondensifiabilityα-dense curvesmeasures of noncompactnessVolterra integral equations
spellingShingle G. García
A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
Applied General Topology
Arzelà-Ascoli theorem
degree of nondensifiability
α-dense curves
measures of noncompactness
Volterra integral equations
title A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
title_full A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
title_fullStr A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
title_full_unstemmed A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
title_short A quantitative version of the Arzelà-Ascoli theorem based on the degree of nondensifiability and applications
title_sort quantitative version of the arzela ascoli theorem based on the degree of nondensifiability and applications
topic Arzelà-Ascoli theorem
degree of nondensifiability
α-dense curves
measures of noncompactness
Volterra integral equations
url https://polipapers.upv.es/index.php/AGT/article/view/10930
work_keys_str_mv AT ggarcia aquantitativeversionofthearzelaascolitheorembasedonthedegreeofnondensifiabilityandapplications
AT ggarcia quantitativeversionofthearzelaascolitheorembasedonthedegreeofnondensifiabilityandapplications