Queueing Systems with Random Volume Customers and a Sectorized Unlimited Memory Buffer

In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized by a non-negative random volume vector. The vector’s indi...

Full description

Bibliographic Details
Main Authors: Tikhonenko Oleg, Ziółkowski Marcin, Kempa Wojciech M.
Format: Article
Language:English
Published: Sciendo 2021-09-01
Series:International Journal of Applied Mathematics and Computer Science
Subjects:
Online Access:https://doi.org/10.34768/amcs-2021-0032
Description
Summary:In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized by a non-negative random volume vector. The vector’s indications can be understood as the sizes of portions of information of a different type that are located in the sectors of memory space of the system during customers’ sojourn in it. This information does not change while a customer is present in the system. After service termination, information immediately leaves the buffer, releasing its resources. In analyzed models, the service time of a customer is assumed to be dependent on his volume vector characteristics, which has influence on the total volume vector distribution. We investigate three types of such queueing systems: the Erlang queueing system, the single-server queueing system with unlimited queue and the egalitarian processor sharing system. For these models, we obtain a joint distribution function of the total volume vector in terms of Laplace (or Laplace–Stieltjes) transforms and formulae for steady-state initial mixed moments of the analyzed random vector, in the case when the memory buffer is composed of two sectors. We also calculate these characteristics for some practical case in which the service time of a customer is proportional to the customer’s length (understood as the sum of the volume vector’s indications). Moreover, we present some numerical computations illustrating theoretical results.
ISSN:2083-8492