A Monte Carlo-Based Iterative Extended Kalman Filter for Bearings-Only Tracking of Sea Targets
In this paper, a Monte Carlo (MC)-based extended Kalman filter is proposed for a two-dimensional bearings-only tracking problem (BOT). This problem addresses the processing of noise-corrupted bearing measurements from a sea acoustic source and estimates state vectors including position and velocity....
Hoofdauteurs: | Sahab Edrisi, Javad Enayati, Abolfazl Rahimnejad, Stephen Andrew Gadsden |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
MDPI AG
2024-03-01
|
Reeks: | Sensors |
Onderwerpen: | |
Online toegang: | https://www.mdpi.com/1424-8220/24/7/2087 |
Gelijkaardige items
-
LiDAR-IMU Tightly-Coupled SLAM Method Based on IEKF and Loop Closure Detection
door: Huimin Pan, et al.
Gepubliceerd in: (2024-01-01) -
Learning Visual-Inertial Odometry With Robocentric Iterated Extended Kalman Filter
door: Khac Duy Nguyen, et al.
Gepubliceerd in: (2024-01-01) -
Kalman Filtering for Improvement Surface-to-Air Missile Guidance
door: Mahdi Hosein Zadeh Heravian
Gepubliceerd in: (2024-02-01) -
Fusion Unbiased Pseudo-Linear Kalman Filter-Based Bearings-Only Target Tracking
door: Zhihao Cai, et al.
Gepubliceerd in: (2024-12-01) -
Analytical Second-Order Extended Kalman Filter for Satellite Relative Orbit Estimation
door: Zhen Yang, et al.
Gepubliceerd in: (2024-10-01)