Existence of solutions to perturbed fractional Nirenberg problems

In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infini...

Full description

Bibliographic Details
Main Authors: Wael Abdelhedi, Suad Alhemedan, Hichem Chtioui, Hichem Hajaiej, Peter A. Markowich
Format: Article
Language:English
Published: Texas State University 2017-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/14/abstr.html
_version_ 1830288161194901504
author Wael Abdelhedi
Suad Alhemedan
Hichem Chtioui
Hichem Hajaiej
Peter A. Markowich
author_facet Wael Abdelhedi
Suad Alhemedan
Hichem Chtioui
Hichem Hajaiej
Peter A. Markowich
author_sort Wael Abdelhedi
collection DOAJ
description In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infinity approach which goes back to Bahri.
first_indexed 2024-12-19T04:30:35Z
format Article
id doaj.art-bbcfcd1a1c00441fa59f61ac99284efb
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-19T04:30:35Z
publishDate 2017-01-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-bbcfcd1a1c00441fa59f61ac99284efb2022-12-21T20:35:53ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-01-01201714,116Existence of solutions to perturbed fractional Nirenberg problemsWael Abdelhedi0Suad Alhemedan1Hichem Chtioui2Hichem Hajaiej3Peter A. Markowich4 Faculty of Sciences of Sfax, Tunisia King Saud Univ., Saudi Arabia Faculty of Sciences of Sfax, Tunisia New York Univ. Shanghai, China Cambridge University, UK In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infinity approach which goes back to Bahri.http://ejde.math.txstate.edu/Volumes/2017/14/abstr.htmlFractional Laplaciancritical exponentsigma-curvaturecritical points at infinity
spellingShingle Wael Abdelhedi
Suad Alhemedan
Hichem Chtioui
Hichem Hajaiej
Peter A. Markowich
Existence of solutions to perturbed fractional Nirenberg problems
Electronic Journal of Differential Equations
Fractional Laplacian
critical exponent
sigma-curvature
critical points at infinity
title Existence of solutions to perturbed fractional Nirenberg problems
title_full Existence of solutions to perturbed fractional Nirenberg problems
title_fullStr Existence of solutions to perturbed fractional Nirenberg problems
title_full_unstemmed Existence of solutions to perturbed fractional Nirenberg problems
title_short Existence of solutions to perturbed fractional Nirenberg problems
title_sort existence of solutions to perturbed fractional nirenberg problems
topic Fractional Laplacian
critical exponent
sigma-curvature
critical points at infinity
url http://ejde.math.txstate.edu/Volumes/2017/14/abstr.html
work_keys_str_mv AT waelabdelhedi existenceofsolutionstoperturbedfractionalnirenbergproblems
AT suadalhemedan existenceofsolutionstoperturbedfractionalnirenbergproblems
AT hichemchtioui existenceofsolutionstoperturbedfractionalnirenbergproblems
AT hichemhajaiej existenceofsolutionstoperturbedfractionalnirenbergproblems
AT peteramarkowich existenceofsolutionstoperturbedfractionalnirenbergproblems