Existence of solutions to perturbed fractional Nirenberg problems
In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infini...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2017-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2017/14/abstr.html |
_version_ | 1830288161194901504 |
---|---|
author | Wael Abdelhedi Suad Alhemedan Hichem Chtioui Hichem Hajaiej Peter A. Markowich |
author_facet | Wael Abdelhedi Suad Alhemedan Hichem Chtioui Hichem Hajaiej Peter A. Markowich |
author_sort | Wael Abdelhedi |
collection | DOAJ |
description | In this article we study a fractional Nirenberg problem with
a small perturbation of a constant. Under a flatness assumption around
the critical points, we prove an existence result in terms of
Euler-Hopf index. Our method hinges on a revisited version of the celebrated
critical points at infinity approach which goes back to Bahri. |
first_indexed | 2024-12-19T04:30:35Z |
format | Article |
id | doaj.art-bbcfcd1a1c00441fa59f61ac99284efb |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-19T04:30:35Z |
publishDate | 2017-01-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-bbcfcd1a1c00441fa59f61ac99284efb2022-12-21T20:35:53ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-01-01201714,116Existence of solutions to perturbed fractional Nirenberg problemsWael Abdelhedi0Suad Alhemedan1Hichem Chtioui2Hichem Hajaiej3Peter A. Markowich4 Faculty of Sciences of Sfax, Tunisia King Saud Univ., Saudi Arabia Faculty of Sciences of Sfax, Tunisia New York Univ. Shanghai, China Cambridge University, UK In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infinity approach which goes back to Bahri.http://ejde.math.txstate.edu/Volumes/2017/14/abstr.htmlFractional Laplaciancritical exponentsigma-curvaturecritical points at infinity |
spellingShingle | Wael Abdelhedi Suad Alhemedan Hichem Chtioui Hichem Hajaiej Peter A. Markowich Existence of solutions to perturbed fractional Nirenberg problems Electronic Journal of Differential Equations Fractional Laplacian critical exponent sigma-curvature critical points at infinity |
title | Existence of solutions to perturbed fractional Nirenberg problems |
title_full | Existence of solutions to perturbed fractional Nirenberg problems |
title_fullStr | Existence of solutions to perturbed fractional Nirenberg problems |
title_full_unstemmed | Existence of solutions to perturbed fractional Nirenberg problems |
title_short | Existence of solutions to perturbed fractional Nirenberg problems |
title_sort | existence of solutions to perturbed fractional nirenberg problems |
topic | Fractional Laplacian critical exponent sigma-curvature critical points at infinity |
url | http://ejde.math.txstate.edu/Volumes/2017/14/abstr.html |
work_keys_str_mv | AT waelabdelhedi existenceofsolutionstoperturbedfractionalnirenbergproblems AT suadalhemedan existenceofsolutionstoperturbedfractionalnirenbergproblems AT hichemchtioui existenceofsolutionstoperturbedfractionalnirenbergproblems AT hichemhajaiej existenceofsolutionstoperturbedfractionalnirenbergproblems AT peteramarkowich existenceofsolutionstoperturbedfractionalnirenbergproblems |