The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters
Silicon carbide is an emerging material in the field of wide band gap semiconductor devices. Due to its high critical breakdown field and high thermal conductance, silicon carbide MOSFET devices are predestined for high-power applications. The concentration of defects with short capture and emission...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Crystals |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4352/10/12/1143 |
_version_ | 1827699928367890432 |
---|---|
author | Maximilian W. Feil Andreas Huerner Katja Puschkarsky Christian Schleich Thomas Aichinger Wolfgang Gustin Hans Reisinger Tibor Grasser |
author_facet | Maximilian W. Feil Andreas Huerner Katja Puschkarsky Christian Schleich Thomas Aichinger Wolfgang Gustin Hans Reisinger Tibor Grasser |
author_sort | Maximilian W. Feil |
collection | DOAJ |
description | Silicon carbide is an emerging material in the field of wide band gap semiconductor devices. Due to its high critical breakdown field and high thermal conductance, silicon carbide MOSFET devices are predestined for high-power applications. The concentration of defects with short capture and emission time constants is higher than in silicon technologies by orders of magnitude which introduces threshold voltage dynamics in the volt regime even on very short time scales. Measurements are heavily affected by timing of readouts and the applied gate voltage before and during the measurement. As a consequence, device parameter determination is not as reproducible as in the case of silicon technologies. Consequent challenges for engineers and researchers to measure device parameters have to be evaluated. In this study, we show how the threshold voltage of planar and trench silicon carbide MOSFET devices of several manufacturers react on short gate pulses of different lengths and voltages and how they influence the outcome of application-relevant pulsed current-voltage characteristics. Measurements are performed via a feedback loop allowing in-situ tracking of the threshold voltage with a measurement delay time of only 1 <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. Device preconditioning, recently suggested to enable reproducible BTI measurements, is investigated in the context of device parameter determination by varying the voltage and the length of the preconditioning pulse. |
first_indexed | 2024-03-10T14:01:20Z |
format | Article |
id | doaj.art-bbd5655d89664d53bf82cabcad661c74 |
institution | Directory Open Access Journal |
issn | 2073-4352 |
language | English |
last_indexed | 2024-03-10T14:01:20Z |
publishDate | 2020-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Crystals |
spelling | doaj.art-bbd5655d89664d53bf82cabcad661c742023-11-21T01:07:19ZengMDPI AGCrystals2073-43522020-12-011012114310.3390/cryst10121143The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device ParametersMaximilian W. Feil0Andreas Huerner1Katja Puschkarsky2Christian Schleich3Thomas Aichinger4Wolfgang Gustin5Hans Reisinger6Tibor Grasser7Institute for Microelectronics, TU Wien, 1040 Wien, AustriaInfineon Technologies AG, 85579 Neubiberg, GermanyInstitute for Microelectronics, TU Wien, 1040 Wien, AustriaCDL for Single-Defect Spectroscopy at the Institute for Microelectronics, TU Wien, 1040 Wien, AustriaInfineon Technologies Austria AG, 9500 Villach, AustriaInfineon Technologies AG, 85579 Neubiberg, GermanyInfineon Technologies AG, 85579 Neubiberg, GermanyInstitute for Microelectronics, TU Wien, 1040 Wien, AustriaSilicon carbide is an emerging material in the field of wide band gap semiconductor devices. Due to its high critical breakdown field and high thermal conductance, silicon carbide MOSFET devices are predestined for high-power applications. The concentration of defects with short capture and emission time constants is higher than in silicon technologies by orders of magnitude which introduces threshold voltage dynamics in the volt regime even on very short time scales. Measurements are heavily affected by timing of readouts and the applied gate voltage before and during the measurement. As a consequence, device parameter determination is not as reproducible as in the case of silicon technologies. Consequent challenges for engineers and researchers to measure device parameters have to be evaluated. In this study, we show how the threshold voltage of planar and trench silicon carbide MOSFET devices of several manufacturers react on short gate pulses of different lengths and voltages and how they influence the outcome of application-relevant pulsed current-voltage characteristics. Measurements are performed via a feedback loop allowing in-situ tracking of the threshold voltage with a measurement delay time of only 1 <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>. Device preconditioning, recently suggested to enable reproducible BTI measurements, is investigated in the context of device parameter determination by varying the voltage and the length of the preconditioning pulse.https://www.mdpi.com/2073-4352/10/12/1143hysteresisdevice parametersreproducibilitydevice characteristicssilicon carbidethreshold voltage |
spellingShingle | Maximilian W. Feil Andreas Huerner Katja Puschkarsky Christian Schleich Thomas Aichinger Wolfgang Gustin Hans Reisinger Tibor Grasser The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters Crystals hysteresis device parameters reproducibility device characteristics silicon carbide threshold voltage |
title | The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters |
title_full | The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters |
title_fullStr | The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters |
title_full_unstemmed | The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters |
title_short | The Impact of Interfacial Charge Trapping on the Reproducibility of Measurements of Silicon Carbide MOSFET Device Parameters |
title_sort | impact of interfacial charge trapping on the reproducibility of measurements of silicon carbide mosfet device parameters |
topic | hysteresis device parameters reproducibility device characteristics silicon carbide threshold voltage |
url | https://www.mdpi.com/2073-4352/10/12/1143 |
work_keys_str_mv | AT maximilianwfeil theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT andreashuerner theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT katjapuschkarsky theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT christianschleich theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT thomasaichinger theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT wolfganggustin theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT hansreisinger theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT tiborgrasser theimpactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT maximilianwfeil impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT andreashuerner impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT katjapuschkarsky impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT christianschleich impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT thomasaichinger impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT wolfganggustin impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT hansreisinger impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters AT tiborgrasser impactofinterfacialchargetrappingonthereproducibilityofmeasurementsofsiliconcarbidemosfetdeviceparameters |