Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign
<p>We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Secon...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-09-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/13/5087/2020/amt-13-5087-2020.pdf |
_version_ | 1818846421694021632 |
---|---|
author | Y. Wang A. Apituley A. Bais S. Beirle N. Benavent A. Borovski I. Bruchkouski K. L. Chan K. L. Chan S. Donner T. Drosoglou H. Finkenzeller H. Finkenzeller M. M. Friedrich U. Frieß D. Garcia-Nieto L. Gómez-Martín F. Hendrick A. Hilboll J. Jin P. Johnston T. K. Koenig T. K. Koenig K. Kreher V. Kumar A. Kyuberis J. Lampel J. Lampel C. Liu H. Liu J. Ma O. L. Polyansky O. L. Polyansky O. Postylyakov R. Querel A. Saiz-Lopez S. Schmitt X. Tian X. Tian J.-L. Tirpitz M. Van Roozendael R. Volkamer R. Volkamer Z. Wang P. Xie C. Xing J. Xu M. Yela C. Zhang T. Wagner |
author_facet | Y. Wang A. Apituley A. Bais S. Beirle N. Benavent A. Borovski I. Bruchkouski K. L. Chan K. L. Chan S. Donner T. Drosoglou H. Finkenzeller H. Finkenzeller M. M. Friedrich U. Frieß D. Garcia-Nieto L. Gómez-Martín F. Hendrick A. Hilboll J. Jin P. Johnston T. K. Koenig T. K. Koenig K. Kreher V. Kumar A. Kyuberis J. Lampel J. Lampel C. Liu H. Liu J. Ma O. L. Polyansky O. L. Polyansky O. Postylyakov R. Querel A. Saiz-Lopez S. Schmitt X. Tian X. Tian J.-L. Tirpitz M. Van Roozendael R. Volkamer R. Volkamer Z. Wang P. Xie C. Xing J. Xu M. Yela C. Zhang T. Wagner |
author_sort | Y. Wang |
collection | DOAJ |
description | <p>We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide
measuring Instruments (CINDI-2) in September 2016 at Cabauw, the Netherlands (51.97<span class="inline-formula"><sup>∘</sup></span> N, 4.93<span class="inline-formula"><sup>∘</sup></span> E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the
first time. Systematic and random discrepancies of the HONO results are
derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>±</mo><mn mathvariant="normal">0.3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="43a41b50450f09413c2cd4391af6a649"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00001.svg" width="57pt" height="14pt" src="amt-13-5087-2020-ie00001.png"/></svg:svg></span></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>, which is half of the typical random discrepancy of <span class="inline-formula">0.6×10<sup>15</sup></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>.
For a typical high HONO delta SCD of <span class="inline-formula">2×10<sup>15</sup></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that
both systematic and random discrepancies of HONO VCDs and near-surface
volume mixing ratios (VMRs) are mostly in the range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>±</mo><mn mathvariant="normal">0.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">14</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="68pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c83bbdf4e8b1b463629f8347397daba8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00002.svg" width="68pt" height="14pt" src="amt-13-5087-2020-ie00002.png"/></svg:svg></span></span> molec. cm<span class="inline-formula"><sup>−2</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>±</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c25eb3cfd166b0622ce04645e8595f6d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00003.svg" width="35pt" height="10pt" src="amt-13-5087-2020-ie00003.png"/></svg:svg></span></span> ppb (typically <span class="inline-formula">∼20</span> %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies
of the HONO delta SCDs. The profile retrievals only contribute to the
discrepancies of the HONO profiles by <span class="inline-formula">∼5</span> %. However, some
data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms
and configurations of radiative transfer models in the profile retrievals
can also be an important uncertainty source. In addition, estimations of
measurement uncertainties of HONO dSCDs, which can significantly impact
profile retrievals using the optimal estimation method, need to consider not
only DOAS fit errors, but also atmospheric variability, especially for an
instrument with a DOAS fit error lower than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">14</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="65a824df87a7b2fc64bf1447398db2c6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00004.svg" width="51pt" height="14pt" src="amt-13-5087-2020-ie00004.png"/></svg:svg></span></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of
<span class="inline-formula">∼0.4</span> ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are
compared with those measured using a co-located long-path DOAS instrument.
The systematic differences are smaller than 0.15 and 0.07 ppb during
early morning and around noon, respectively. Since true HONO values at high
altitudes are not known in the absence of real measurements, in order to
evaluate the abilities of profile inversion algorithms to respond to
different HONO profile shapes, we performed sensitivity studies using
synthetic HONO delta SCDs simulated by a radiative transfer model with
assumed HONO profiles. The tests indicate that the profile inversion
algorithms based on the optimal estimation method with proper configurations
can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS
measurements are expected to represent the ambient HONO profiles well.</p> |
first_indexed | 2024-12-19T05:45:17Z |
format | Article |
id | doaj.art-bbd7c3a9add346139130bc965ef2d31f |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-19T05:45:17Z |
publishDate | 2020-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-bbd7c3a9add346139130bc965ef2d31f2022-12-21T20:33:52ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-09-01135087511610.5194/amt-13-5087-2020Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaignY. Wang0A. Apituley1A. Bais2S. Beirle3N. Benavent4A. Borovski5I. Bruchkouski6K. L. Chan7K. L. Chan8S. Donner9T. Drosoglou10H. Finkenzeller11H. Finkenzeller12M. M. Friedrich13U. Frieß14D. Garcia-Nieto15L. Gómez-Martín16F. Hendrick17A. Hilboll18J. Jin19P. Johnston20T. K. Koenig21T. K. Koenig22K. Kreher23V. Kumar24A. Kyuberis25J. Lampel26J. Lampel27C. Liu28H. Liu29J. Ma30O. L. Polyansky31O. L. Polyansky32O. Postylyakov33R. Querel34A. Saiz-Lopez35S. Schmitt36X. Tian37X. Tian38J.-L. Tirpitz39M. Van Roozendael40R. Volkamer41R. Volkamer42Z. Wang43P. Xie44C. Xing45J. Xu46M. Yela47C. Zhang48T. Wagner49Max Planck Institute for Chemistry, Mainz, GermanyRoyal Netherlands Meteorological Institute (KNMI), De Bilt, the NetherlandsLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, GreeceMax Planck Institute for Chemistry, Mainz, GermanyDepartment of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano (CSIC), Madrid, SpainA. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, RussiaNational Ozone Monitoring Research and Education Center BSU (NOMREC BSU), Belarusian State University, Minsk, BelarusMeteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyMax Planck Institute for Chemistry, Mainz, GermanyLaboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, GreeceDepartment of Chemistry, University of Colorado Boulder, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, Boulder, CO, USARoyal Belgian Institute for Space Aeronomy, Brussels, BelgiumInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyDepartment of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano (CSIC), Madrid, SpainNational Institute of Aerospatial Technology, Madrid, SpainRoyal Belgian Institute for Space Aeronomy, Brussels, BelgiumInstitute of Environmental Physics, University of Bremen, Bremen, GermanyMeteorological Observation Center, China Meteorological Administration, Beijing, ChinaNational Institute of Water & Atmospheric Research (NIWA), Lauder, New ZealandDepartment of Chemistry, University of Colorado Boulder, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, Boulder, CO, USABK Scientific, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyInstitute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyAiryx GmbH, Justus-von-Liebig-Str. 14, 69214 Eppelheim, GermanyDepartment of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, ChinaDepartment of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, ChinaChinese Academy of Meteorology Science, China Meteorological Administration, Beijing, ChinaInstitute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, RussiaDepartment of Physics and Astronomy, University College London, Gower St, London, WC1E 6BT, UKA. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, RussiaNational Institute of Water & Atmospheric Research (NIWA), Lauder, New ZealandDepartment of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano (CSIC), Madrid, SpainInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyInstitutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, ChinaAnhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, ChinaInstitute of Environmental Physics, University of Heidelberg, Heidelberg, GermanyRoyal Belgian Institute for Space Aeronomy, Brussels, BelgiumDepartment of Chemistry, University of Colorado Boulder, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, Boulder, CO, USARemote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyAnhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, ChinaSchool of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAnhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, ChinaNational Institute of Aerospatial Technology, Madrid, SpainSchool of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaMax Planck Institute for Chemistry, Mainz, Germany<p>We present the inter-comparison of delta slant column densities (SCDs) and vertical profiles of nitrous acid (HONO) derived from measurements of different multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments and using different inversion algorithms during the Second Cabauw Inter-comparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) in September 2016 at Cabauw, the Netherlands (51.97<span class="inline-formula"><sup>∘</sup></span> N, 4.93<span class="inline-formula"><sup>∘</sup></span> E). The HONO vertical profiles, vertical column densities (VCDs), and near-surface volume mixing ratios are compared between different MAX-DOAS instruments and profile inversion algorithms for the first time. Systematic and random discrepancies of the HONO results are derived from the comparisons of all data sets against their median values. Systematic discrepancies of HONO delta SCDs are observed in the range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>±</mo><mn mathvariant="normal">0.3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">15</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="57pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="43a41b50450f09413c2cd4391af6a649"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00001.svg" width="57pt" height="14pt" src="amt-13-5087-2020-ie00001.png"/></svg:svg></span></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>, which is half of the typical random discrepancy of <span class="inline-formula">0.6×10<sup>15</sup></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>. For a typical high HONO delta SCD of <span class="inline-formula">2×10<sup>15</sup></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>, the relative systematic and random discrepancies are about 15 % and 30 %, respectively. The inter-comparison of HONO profiles shows that both systematic and random discrepancies of HONO VCDs and near-surface volume mixing ratios (VMRs) are mostly in the range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>±</mo><mn mathvariant="normal">0.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">14</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="68pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c83bbdf4e8b1b463629f8347397daba8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00002.svg" width="68pt" height="14pt" src="amt-13-5087-2020-ie00002.png"/></svg:svg></span></span> molec. cm<span class="inline-formula"><sup>−2</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>±</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c25eb3cfd166b0622ce04645e8595f6d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00003.svg" width="35pt" height="10pt" src="amt-13-5087-2020-ie00003.png"/></svg:svg></span></span> ppb (typically <span class="inline-formula">∼20</span> %). Further we find that the discrepancies of the retrieved HONO profiles are dominated by discrepancies of the HONO delta SCDs. The profile retrievals only contribute to the discrepancies of the HONO profiles by <span class="inline-formula">∼5</span> %. However, some data sets with substantially larger discrepancies than the typical values indicate that inappropriate implementations of profile inversion algorithms and configurations of radiative transfer models in the profile retrievals can also be an important uncertainty source. In addition, estimations of measurement uncertainties of HONO dSCDs, which can significantly impact profile retrievals using the optimal estimation method, need to consider not only DOAS fit errors, but also atmospheric variability, especially for an instrument with a DOAS fit error lower than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">14</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="65a824df87a7b2fc64bf1447398db2c6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-5087-2020-ie00004.svg" width="51pt" height="14pt" src="amt-13-5087-2020-ie00004.png"/></svg:svg></span></span> molec. cm<span class="inline-formula"><sup>−2</sup></span>. The MAX-DOAS results during the CINDI-2 campaign indicate that the peak HONO levels (e.g. near-surface VMRs of <span class="inline-formula">∼0.4</span> ppb) often appeared in the early morning and below 0.2 km. The near-surface VMRs retrieved from the MAX-DOAS observations are compared with those measured using a co-located long-path DOAS instrument. The systematic differences are smaller than 0.15 and 0.07 ppb during early morning and around noon, respectively. Since true HONO values at high altitudes are not known in the absence of real measurements, in order to evaluate the abilities of profile inversion algorithms to respond to different HONO profile shapes, we performed sensitivity studies using synthetic HONO delta SCDs simulated by a radiative transfer model with assumed HONO profiles. The tests indicate that the profile inversion algorithms based on the optimal estimation method with proper configurations can reproduce the different HONO profile shapes well. Therefore we conclude that the features of HONO accumulated near the surface derived from MAX-DOAS measurements are expected to represent the ambient HONO profiles well.</p>https://amt.copernicus.org/articles/13/5087/2020/amt-13-5087-2020.pdf |
spellingShingle | Y. Wang A. Apituley A. Bais S. Beirle N. Benavent A. Borovski I. Bruchkouski K. L. Chan K. L. Chan S. Donner T. Drosoglou H. Finkenzeller H. Finkenzeller M. M. Friedrich U. Frieß D. Garcia-Nieto L. Gómez-Martín F. Hendrick A. Hilboll J. Jin P. Johnston T. K. Koenig T. K. Koenig K. Kreher V. Kumar A. Kyuberis J. Lampel J. Lampel C. Liu H. Liu J. Ma O. L. Polyansky O. L. Polyansky O. Postylyakov R. Querel A. Saiz-Lopez S. Schmitt X. Tian X. Tian J.-L. Tirpitz M. Van Roozendael R. Volkamer R. Volkamer Z. Wang P. Xie C. Xing J. Xu M. Yela C. Zhang T. Wagner Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign Atmospheric Measurement Techniques |
title | Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign |
title_full | Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign |
title_fullStr | Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign |
title_full_unstemmed | Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign |
title_short | Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign |
title_sort | inter comparison of max doas measurements of tropospheric hono slant column densities and vertical profiles during the cindi 2 campaign |
url | https://amt.copernicus.org/articles/13/5087/2020/amt-13-5087-2020.pdf |
work_keys_str_mv | AT ywang intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT aapituley intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT abais intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT sbeirle intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT nbenavent intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT aborovski intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT ibruchkouski intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT klchan intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT klchan intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT sdonner intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT tdrosoglou intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT hfinkenzeller intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT hfinkenzeller intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT mmfriedrich intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT ufrieß intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT dgarcianieto intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT lgomezmartin intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT fhendrick intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT ahilboll intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT jjin intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT pjohnston intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT tkkoenig intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT tkkoenig intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT kkreher intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT vkumar intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT akyuberis intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT jlampel intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT jlampel intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT cliu intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT hliu intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT jma intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT olpolyansky intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT olpolyansky intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT opostylyakov intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT rquerel intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT asaizlopez intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT sschmitt intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT xtian intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT xtian intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT jltirpitz intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT mvanroozendael intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT rvolkamer intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT rvolkamer intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT zwang intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT pxie intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT cxing intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT jxu intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT myela intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT czhang intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign AT twagner intercomparisonofmaxdoasmeasurementsoftropospherichonoslantcolumndensitiesandverticalprofilesduringthecindi2campaign |