Summary: | Tool steels are used in technological processes of forming and cutting and as cutting tools due to their good mechanical properties. During their working cycle, steels are exposed to several aggressive conditions, such as thermal stress, fatigue and various forms of wear. In this article, the selected 90MnCrV8 tool steel slid against the Si<sub>3</sub>N<sub>4</sub> testing ceramic bearing ball. All measurements were performed on a universal tribometric device UMT TriboLab (TA Instruments, New Castle, Delaware, USA) under dry conditions. The main objective of the performed experiments was to analyse the frictional properties and compare the wear of the 90MnCrV8 tested tool steel in contact with the 6.35 mm diameter ceramic ball at different friction speeds. In this measurement evaluation, the authors of the article mainly focused on the influence of the magnitude of the peripheral speed on the wear change and coefficient of friction. Further analysis was focused on the change of surface roughness of the counterpart ceramic balls as well as of the tested tool steel samples. Experimental results show the fact that tested tool steels, which can also be considered as high strength steels, can also successfully represent wear-resistant steels. It has been shown experimentally that increasing the friction speed also leads to significant degradation of the material on the sample surface. Finally, the effect of hardness on wear has also been experimentally demonstrated. The Si<sub>3</sub>N<sub>4</sub> ceramic ball with its high strength also behaves like an abrasive, thus increasing the wear rate on the experimental tool steel samples.
|