Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-bovine Serum Albumin for the Highly Sensitive Detection of Cancer Biomarkers

Abstract A simple, convenient, and highly sensitive bio-interface for graphene field-effect transistors (GFETs) based on multifunctional nano-denatured bovine serum albumin (nano-dBSA) functionalization was developed to target cancer biomarkers. The novel graphene–protein bioelectronic interface was...

Full description

Bibliographic Details
Main Authors: Lin Zhou, Kun Wang, Hao Sun, Simin Zhao, Xianfeng Chen, Dahong Qian, Hongju Mao, Jianlong Zhao
Format: Article
Language:English
Published: SpringerOpen 2019-03-01
Series:Nano-Micro Letters
Subjects:
Online Access:http://link.springer.com/article/10.1007/s40820-019-0250-8
Description
Summary:Abstract A simple, convenient, and highly sensitive bio-interface for graphene field-effect transistors (GFETs) based on multifunctional nano-denatured bovine serum albumin (nano-dBSA) functionalization was developed to target cancer biomarkers. The novel graphene–protein bioelectronic interface was constructed by heating to denature native BSA on the graphene substrate surface. The formed nano-dBSA film served as the cross-linker to immobilize monoclonal antibody against carcinoembryonic antigen (anti-CEA mAb) on the graphene channel activated by EDC and Sulfo-NHS. The nano-dBSA film worked as a self-protecting layer of graphene to prevent surface contamination by lithographic processing. The improved GFET biosensor exhibited good specificity and high sensitivity toward the target at an ultralow concentration of 337.58 fg mL−1. The electrical detection of the binding of CEA followed the Hill model for ligand–receptor interaction, indicating the negative binding cooperativity between CEA and anti-CEA mAb with a dissociation constant of 6.82 × 10−10 M. The multifunctional nano-dBSA functionalization can confer a new function to graphene-like 2D nanomaterials and provide a promising bio-functionalization method for clinical application in biosensing, nanomedicine, and drug delivery.
ISSN:2311-6706
2150-5551