In vivo assessment of anisotropy of apparent magnetic susceptibility in white matter from a single orientation acquisition

Multiple studies have reported a significant dependence of the effective transverse relaxation rate constant (R2*) and the phase of gradient-echo based (GRE) signal on the orientation of white matter fibres in the human brain. It has also been hypothesized that magnetic susceptibility, as obtained b...

Full description

Bibliographic Details
Main Authors: Renat Sibgatulin, Daniel Güllmar, Andreas Deistung, Stefan Ropele, Jürgen R. Reichenbach
Format: Article
Language:English
Published: Elsevier 2021-11-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811921007175
Description
Summary:Multiple studies have reported a significant dependence of the effective transverse relaxation rate constant (R2*) and the phase of gradient-echo based (GRE) signal on the orientation of white matter fibres in the human brain. It has also been hypothesized that magnetic susceptibility, as obtained by single-orientation quantitative susceptibility mapping (QSM), exhibits such a dependence. In this study, we investigated this hypothesized relationship in a cohort of healthy volunteers. We show that R2* follows the predicted orientation dependence consistently across white matter regions, whereas the apparent magnetic susceptibility is related differently to fibre orientation across the brain and often in a complex non-monotonic manner. In addition, we explored the effect of fractional anisotropy measured by diffusion-weighted MRI on the strength of the orientation dependence and observed only a limited influence in many regions. However, with careful consideration of such an impact and the limitations imposed by the ill-posed nature of the dipole inversion process, it is possible to study magnetic susceptibility anisotropy in specific brain regions with a single orientation acquisition.
ISSN:1095-9572