Forest–atmosphere exchange of reactive nitrogen in a remote region – Part I: Measuring temporal dynamics

<p>Long-term dry deposition flux measurements of reactive nitrogen based on the eddy covariance or the aerodynamic gradient method are scarce. Due to the large diversity of reactive nitrogen compounds and high technical requirements for the measuring devices, simultaneous measurements of indiv...

Full description

Bibliographic Details
Main Authors: P. Wintjen, F. Schrader, M. Schaap, B. Beudert, C. Brümmer
Format: Article
Language:English
Published: Copernicus Publications 2022-01-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/19/389/2022/bg-19-389-2022.pdf
Description
Summary:<p>Long-term dry deposition flux measurements of reactive nitrogen based on the eddy covariance or the aerodynamic gradient method are scarce. Due to the large diversity of reactive nitrogen compounds and high technical requirements for the measuring devices, simultaneous measurements of individual reactive nitrogen compounds are not affordable. Hence, we examined the exchange patterns of total reactive nitrogen (<span class="inline-formula">ΣN<sub>r</sub></span>) and determined annual dry deposition budgets based on measured data at a mixed forest exposed to low air pollution levels located in the Bavarian Forest National Park (NPBW), Germany. Flux measurements of <span class="inline-formula">ΣN<sub>r</sub></span> were carried out with the Total Reactive Atmospheric Nitrogen Converter (TRANC) coupled to a chemiluminescence detector (CLD) for 2.5 years.</p> <p>The average <span class="inline-formula">ΣN<sub>r</sub></span> concentration was 3.1 <span class="inline-formula">µg N m<sup>−3</sup></span>. Denuder measurements with DELTA samplers and chemiluminescence measurements of nitrogen oxides (NO<span class="inline-formula"><sub><i>x</i></sub></span>) have shown that NO<span class="inline-formula"><sub><i>x</i></sub></span> has the highest contribution to <span class="inline-formula">ΣN<sub>r</sub></span> (<span class="inline-formula">∼51.4 %</span>), followed by ammonia (<span class="inline-formula">NH<sub>3</sub></span>) (<span class="inline-formula">∼20.0 %</span>), ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8cff18dc7544e09830abea500d71300b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-389-2022-ie00001.svg" width="24pt" height="15pt" src="bg-19-389-2022-ie00001.png"/></svg:svg></span></span>) (<span class="inline-formula">∼15.3 %</span>), nitrate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9712381780fcc4de6c4d72f703a8771c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-389-2022-ie00002.svg" width="25pt" height="16pt" src="bg-19-389-2022-ie00002.png"/></svg:svg></span></span> (<span class="inline-formula">∼7.0 %</span>), and nitric acid (<span class="inline-formula">HNO<sub>3</sub></span>) (<span class="inline-formula">∼6.3 %</span>). Only slight seasonal changes were found in the <span class="inline-formula">ΣN<sub>r</sub></span> concentration level, whereas a seasonal pattern was observed for the contribution of <span class="inline-formula">NH<sub>3</sub></span> and NO<span class="inline-formula"><sub><i>x</i></sub></span>. <span class="inline-formula">NH<sub>3</sub></span> showed highest contributions to <span class="inline-formula">ΣN<sub>r</sub></span> in spring and summer, NO<span class="inline-formula"><sub><i>x</i></sub></span> in autumn and winter.</p> <p>We observed deposition fluxes at the measurement site with median fluxes ranging from <span class="inline-formula">−</span>15 to <span class="inline-formula">−</span>5 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">ng</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">N</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="15c7f58df3083e15bb72b02ec9cf128e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-389-2022-ie00003.svg" width="61pt" height="15pt" src="bg-19-389-2022-ie00003.png"/></svg:svg></span></span> (negative fluxes indicate deposition). Median deposition velocities ranged from 0.2 to 0.5 <span class="inline-formula">cm s<sup>−1</sup></span>. In general, highest deposition velocities were recorded during high solar radiation, in particular from May to September. Our results suggest that seasonal changes in composition of <span class="inline-formula">ΣN<sub>r</sub></span>, global radiation (<span class="inline-formula"><i>R</i><sub>g</sub></span>), and other drivers correlated with <span class="inline-formula"><i>R</i><sub>g</sub></span> were most likely influencing the deposition velocity (<span class="inline-formula"><i>v</i><sub>d</sub></span>). We found that from May to September higher temperatures, lower relative humidity, and dry leaf surfaces increase <span class="inline-formula"><i>v</i><sub>d</sub></span> of <span class="inline-formula">ΣN<sub>r</sub></span>. At the measurement site, <span class="inline-formula">ΣN<sub>r</sub></span> concentration did not emerge as a driver for the <span class="inline-formula">ΣN<sub>r</sub><i>v</i><sub>d</sub></span>.</p> <p>No significant influence of temperature, humidity, friction velocity, or wind speed on <span class="inline-formula">ΣN<sub>r</sub></span> fluxes when using the mean-diurnal-variation (MDV) approach for filling gaps of up to 5 days was found. Remaining gaps were replaced by a monthly average of the specific half-hourly value. From June 2016 to May 2017 and June 2017 to May 2018, we estimated dry deposition sums of 3.8 and 4.0 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M36" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">N</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">ha</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3d622f083d7beee7f925678d6e6c6af0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-389-2022-ie00004.svg" width="65pt" height="15pt" src="bg-19-389-2022-ie00004.png"/></svg:svg></span></span>, respectively. Adding results from the wet deposition measurements, we determined 12.2 and 10.9 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">kg</mi><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">N</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">ha</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="0aedb55a7f2c97ea5ca5cfc118929278"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-389-2022-ie00005.svg" width="65pt" height="15pt" src="bg-19-389-2022-ie00005.png"/></svg:svg></span></span> as total nitrogen deposition in the 2 years of observation.</p> <p>This work encompasses (one of) the first long-term flux measurements of <span class="inline-formula">ΣN<sub>r</sub></span> using novel measurements techniques for estimating annual nitrogen dry deposition to a remote forest ecosystem.</p>
ISSN:1726-4170
1726-4189