The Classical Hom–Leibniz Yang–Baxter Equation and Hom–Leibniz Bialgebras
In this paper, we first introduce the notion of Hom–Leibniz bialgebras, which is equivalent to matched pairs of Hom–Leibniz algebras and Manin triples of Hom–Leibniz algebras. Additionally, we extend the notion of relative Rota–Baxter operators to Hom–Leibniz algebras and prove that there is a Hom–p...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/11/1920 |
Summary: | In this paper, we first introduce the notion of Hom–Leibniz bialgebras, which is equivalent to matched pairs of Hom–Leibniz algebras and Manin triples of Hom–Leibniz algebras. Additionally, we extend the notion of relative Rota–Baxter operators to Hom–Leibniz algebras and prove that there is a Hom–pre-Leibniz algebra structure on Hom–Leibniz algebras that have a relative Rota–Baxter operator. Finally, we study the classical Hom–Leibniz Yang–Baxter equation on Hom–Leibniz algebras and present its connection with the relative Rota–Baxter operator. |
---|---|
ISSN: | 2227-7390 |