A Comparative Study of Chemical Profiling and Bioactivities between Thai and Foreign Hemp Seed Species (<i>Cannabis sativa</i> L.) Plus an In-Silico Investigation

Hemp (<i>Cannabis sativa</i> L.) is a plant widely used by humans for textiles, food, and medicine. Thus, this study aimed to characterize the chemical profiling of 12 hemp seed extracts from Thai (HS-TH) and foreign (HS-FS) samples using gas chromatography-mass spectrometry (GC–MS). The...

Full description

Bibliographic Details
Main Authors: Suthinee Sangkanu, Thanet Pitakbut, Sathianpong Phoopha, Jiraporn Khanansuk, Kasemsiri Chandarajoti, Sukanya Dej-adisai
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/13/1/55
Description
Summary:Hemp (<i>Cannabis sativa</i> L.) is a plant widely used by humans for textiles, food, and medicine. Thus, this study aimed to characterize the chemical profiling of 12 hemp seed extracts from Thai (HS-TH) and foreign (HS-FS) samples using gas chromatography-mass spectrometry (GC–MS). Their antibacterial activity and α-glucosidase inhibitory activity were assayed. Linoleic acid (17.63–86.53%) was a major component presented in Thai hemp seed extracts, while α,β-gluco-octonic acid lactone (30.39%), clionasterol (13.42–29.07%), and glyceryl-linoleate (15.12%) were detected as the main metabolites found in foreign hemp seed extracts. Furthermore, eight extracts from both Thai and foreign hemp seed exhibited antibacterial activity against <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, Methicillin-resistant <i>Staphylococcus aureus</i>, and <i>Cutibacterium acnes</i>, with MIC values ranging from 128 to 2048 µg/mL. Interestingly, the ethanol extract of Thai hemp seed (HS-TH-2-M-E) showed superior α-glucosidase inhibition (IC<sub>50</sub> value of 33.27 ug/mL) over foreign species. The combination between Thai hemp species (HS-TH-2-M-E) and acarbose showed a synergistic effect against α-glucosidase. Furthermore, the docking investigation revealed that fatty acids had a greater impact on α-glucosidase than fatty acid esters and cannabinoids. The computational simulation predicts a potential allosteric binding pocket of guanosine on glucosidase and is the first description of gluco-octonic acid’s anti-glucosidase activity in silico. The findings concluded that Thai hemp seed could be used as a resource for supplemental drugs or dietary therapy for diabetes mellitus.
ISSN:2304-8158