Bayesian Mendelian randomization with an interval causal null hypothesis: ternary decision rules and loss function calibration

Abstract We enhance the Bayesian Mendelian Randomization (MR) framework of Berzuini et al. (Biostatistics 21(1):86–101, 2018) by allowing for interval null causal hypotheses, where values of the causal effect parameter that fall within a user-specified interval of “practical equivalence” (ROPE) (Kru...

全面介绍

书目详细资料
Main Authors: Linyi Zou, Teresa Fazia, Hui Guo, Carlo Berzuini
格式: 文件
语言:English
出版: BMC 2024-01-01
丛编:BMC Medical Research Methodology
主题:
在线阅读:https://doi.org/10.1186/s12874-023-02067-4