Network analysis of human protein location

<p>Abstract</p> <p>Background</p> <p>Understanding cellular systems requires the knowledge of a protein's subcellular localization (SCL). Although experimental and predicted data for protein SCL are archived in various databases, SCL prediction remains a non-trivia...

Full description

Bibliographic Details
Main Authors: Ranganathan Shoba, Kumar Gaurav
Format: Article
Language:English
Published: BMC 2010-10-01
Series:BMC Bioinformatics
_version_ 1818146244696997888
author Ranganathan Shoba
Kumar Gaurav
author_facet Ranganathan Shoba
Kumar Gaurav
author_sort Ranganathan Shoba
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Understanding cellular systems requires the knowledge of a protein's subcellular localization (SCL). Although experimental and predicted data for protein SCL are archived in various databases, SCL prediction remains a non-trivial problem in genome annotation. Current SCL prediction tools use amino-acid sequence features and text mining approaches. A comprehensive analysis of protein SCL in human PPI and metabolic networks for various subcellular compartments is necessary for developing a robust SCL prediction methodology.</p> <p>Results</p> <p>Based on protein-protein interaction (PPI) and metabolite-linked protein interaction (MLPI) networks of proteins, we have compared, contrasted and analysed the statistical properties across different subcellular compartments. We integrated PPI and metabolic datasets with SCL information of human proteins from LOCATE and GOA (Gene Ontology Annotation) and estimated three statistical properties: Chi-square (χ<sup>2</sup>) test, Paired Localisation Correlation Profile (PLCP) and network topological measures. For the PPI network, Pearson's chi-square test shows that for the same SCL category, twice as many interacting protein pairs are observed than estimated when compared to non-interacting protein pairs (χ<sup>2 </sup>= 1270.19, <it>P-value </it>< 2.2 × 10<sup>-16</sup>), whereas for MLPI, metabolite-linked protein pairs having the same SCL are observed 20% more than expected, compared to non-metabolite linked proteins (χ<sup>2 </sup>= 110.02, <it>P-value </it>< 2.2 x10<sup>-16</sup>). To address the issue of proteins with multiple SCLs, we have specifically used the PLCP (Pair Localization Correlation Profile) measure. PLCP analysis revealed that protein interactions are majorly restricted to the same SCL, though significant cross-compartment interactions are seen for nuclear proteins. Metabolite-linked protein pairs are restricted to specific compartments such as the mitochondrion (<it>P-value </it>< 6.0e-07), the lysosome (<it>P-value </it>< 4.7e-05) and the Golgi apparatus (<it>P-value </it>< 1.0e-15). These findings indicate that the metabolic network adds value to the information in the PPI network for the localisation process of proteins in human subcellular compartments.</p> <p>Conclusions</p> <p>The MLPI network differs significantly from the PPI network in its SCL distribution. The PPI network shows passive protein interaction, possibly due to its high false positive rate, across different subcellular compartments, which seem to be absent in the MLPI network, as the MLPI network has evolved to maintain high substrate specificity for proteins.</p>
first_indexed 2024-12-11T12:16:17Z
format Article
id doaj.art-bc2ab6a200e14edfa8af86824033ca00
institution Directory Open Access Journal
issn 1471-2105
language English
last_indexed 2024-12-11T12:16:17Z
publishDate 2010-10-01
publisher BMC
record_format Article
series BMC Bioinformatics
spelling doaj.art-bc2ab6a200e14edfa8af86824033ca002022-12-22T01:07:39ZengBMCBMC Bioinformatics1471-21052010-10-0111Suppl 7S910.1186/1471-2105-11-S7-S9Network analysis of human protein locationRanganathan ShobaKumar Gaurav<p>Abstract</p> <p>Background</p> <p>Understanding cellular systems requires the knowledge of a protein's subcellular localization (SCL). Although experimental and predicted data for protein SCL are archived in various databases, SCL prediction remains a non-trivial problem in genome annotation. Current SCL prediction tools use amino-acid sequence features and text mining approaches. A comprehensive analysis of protein SCL in human PPI and metabolic networks for various subcellular compartments is necessary for developing a robust SCL prediction methodology.</p> <p>Results</p> <p>Based on protein-protein interaction (PPI) and metabolite-linked protein interaction (MLPI) networks of proteins, we have compared, contrasted and analysed the statistical properties across different subcellular compartments. We integrated PPI and metabolic datasets with SCL information of human proteins from LOCATE and GOA (Gene Ontology Annotation) and estimated three statistical properties: Chi-square (χ<sup>2</sup>) test, Paired Localisation Correlation Profile (PLCP) and network topological measures. For the PPI network, Pearson's chi-square test shows that for the same SCL category, twice as many interacting protein pairs are observed than estimated when compared to non-interacting protein pairs (χ<sup>2 </sup>= 1270.19, <it>P-value </it>< 2.2 × 10<sup>-16</sup>), whereas for MLPI, metabolite-linked protein pairs having the same SCL are observed 20% more than expected, compared to non-metabolite linked proteins (χ<sup>2 </sup>= 110.02, <it>P-value </it>< 2.2 x10<sup>-16</sup>). To address the issue of proteins with multiple SCLs, we have specifically used the PLCP (Pair Localization Correlation Profile) measure. PLCP analysis revealed that protein interactions are majorly restricted to the same SCL, though significant cross-compartment interactions are seen for nuclear proteins. Metabolite-linked protein pairs are restricted to specific compartments such as the mitochondrion (<it>P-value </it>< 6.0e-07), the lysosome (<it>P-value </it>< 4.7e-05) and the Golgi apparatus (<it>P-value </it>< 1.0e-15). These findings indicate that the metabolic network adds value to the information in the PPI network for the localisation process of proteins in human subcellular compartments.</p> <p>Conclusions</p> <p>The MLPI network differs significantly from the PPI network in its SCL distribution. The PPI network shows passive protein interaction, possibly due to its high false positive rate, across different subcellular compartments, which seem to be absent in the MLPI network, as the MLPI network has evolved to maintain high substrate specificity for proteins.</p>
spellingShingle Ranganathan Shoba
Kumar Gaurav
Network analysis of human protein location
BMC Bioinformatics
title Network analysis of human protein location
title_full Network analysis of human protein location
title_fullStr Network analysis of human protein location
title_full_unstemmed Network analysis of human protein location
title_short Network analysis of human protein location
title_sort network analysis of human protein location
work_keys_str_mv AT ranganathanshoba networkanalysisofhumanproteinlocation
AT kumargaurav networkanalysisofhumanproteinlocation