Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order

In this paper, we develop a Hermite cubic spline collocation method (HCSCM) for solving variable-order nonlinear fractional differential equations, which apply <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup&...

Full description

Bibliographic Details
Main Authors: Tinggang Zhao, Yujiang Wu
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/5/872
_version_ 1797534264519032832
author Tinggang Zhao
Yujiang Wu
author_facet Tinggang Zhao
Yujiang Wu
author_sort Tinggang Zhao
collection DOAJ
description In this paper, we develop a Hermite cubic spline collocation method (HCSCM) for solving variable-order nonlinear fractional differential equations, which apply <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>1</mn></msup></semantics></math></inline-formula>-continuous nodal basis functions to an approximate problem. We also verify that the order of convergence of the HCSCM is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>h</mi><mrow><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mn>4</mn><mo>−</mo><mi>α</mi><mo>,</mo><mi>p</mi><mo>}</mo></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> while the interpolating function belongs to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mi>p</mi></msup><mrow><mo>(</mo><mi>p</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>h</i> is the mesh size and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> the order of the fractional derivative. Many numerical tests are performed to confirm the effectiveness of the HCSCM for fractional differential equations, which include Helmholtz equations and the fractional Burgers equation of constant-order and variable-order with Riemann-Liouville, Caputo and Patie-Simon sense as well as two-sided cases.
first_indexed 2024-03-10T11:27:07Z
format Article
id doaj.art-bc30d6bd8ec047d68d09b1295b940901
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T11:27:07Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-bc30d6bd8ec047d68d09b1295b9409012023-11-21T19:35:14ZengMDPI AGSymmetry2073-89942021-05-0113587210.3390/sym13050872Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-OrderTinggang Zhao0Yujiang Wu1School of Mathematics, Lanzhou City University, Lanzhou 730070, ChinaSchool of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, ChinaIn this paper, we develop a Hermite cubic spline collocation method (HCSCM) for solving variable-order nonlinear fractional differential equations, which apply <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>1</mn></msup></semantics></math></inline-formula>-continuous nodal basis functions to an approximate problem. We also verify that the order of convergence of the HCSCM is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><msup><mi>h</mi><mrow><mo movablelimits="true" form="prefix">min</mo><mo>{</mo><mn>4</mn><mo>−</mo><mi>α</mi><mo>,</mo><mi>p</mi><mo>}</mo></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula> while the interpolating function belongs to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>C</mi><mi>p</mi></msup><mrow><mo>(</mo><mi>p</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>h</i> is the mesh size and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> the order of the fractional derivative. Many numerical tests are performed to confirm the effectiveness of the HCSCM for fractional differential equations, which include Helmholtz equations and the fractional Burgers equation of constant-order and variable-order with Riemann-Liouville, Caputo and Patie-Simon sense as well as two-sided cases.https://www.mdpi.com/2073-8994/13/5/872collocation methodfractional calculushermite cubic splinefractional burgers equation
spellingShingle Tinggang Zhao
Yujiang Wu
Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
Symmetry
collocation method
fractional calculus
hermite cubic spline
fractional burgers equation
title Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
title_full Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
title_fullStr Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
title_full_unstemmed Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
title_short Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
title_sort hermite cubic spline collocation method for nonlinear fractional differential equations with variable order
topic collocation method
fractional calculus
hermite cubic spline
fractional burgers equation
url https://www.mdpi.com/2073-8994/13/5/872
work_keys_str_mv AT tinggangzhao hermitecubicsplinecollocationmethodfornonlinearfractionaldifferentialequationswithvariableorder
AT yujiangwu hermitecubicsplinecollocationmethodfornonlinearfractionaldifferentialequationswithvariableorder