Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions
This study aimed to develop nanoemulsions with a focus on improving the bioactivity of oregano essential oil (OEO), carvacrol and thymol for possible food applications. Nanoemulsions were prepared with acoustic cavitation using ultrasound. The nanodroplets had average diameters of 54.47, 81.66 and 8...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-05-01
|
Series: | Foods |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-8158/12/9/1901 |
_version_ | 1797602643910066176 |
---|---|
author | Bruno Dutra da Silva Denes Kaic Alves do Rosário Luiz Torres Neto Carini Aparecida Lelis Carlos Adam Conte-Junior |
author_facet | Bruno Dutra da Silva Denes Kaic Alves do Rosário Luiz Torres Neto Carini Aparecida Lelis Carlos Adam Conte-Junior |
author_sort | Bruno Dutra da Silva |
collection | DOAJ |
description | This study aimed to develop nanoemulsions with a focus on improving the bioactivity of oregano essential oil (OEO), carvacrol and thymol for possible food applications. Nanoemulsions were prepared with acoustic cavitation using ultrasound. The nanodroplets had average diameters of 54.47, 81.66 and 84.07 nm for OEO, thymol and carvacrol, respectively. The main compound in OEO was carvacrol (74%), and the concentration in the nanoemulsions was 9.46 mg/mL for OEO and the isolated compounds. The effects of droplet size reduction on antioxidant, antibacterial and antibiofilm activity were evaluated. Regarding antioxidant activity, the nanoemulsions performed better at the same concentration, with inhibitions >45% of the DPPH radical and significant differences compared with their non-nanoemulsified versions (<i>p</i> < 0.05). The nanoemulsions’ minimum inhibitory concentration (MIC) and non-nanoemulsified compounds were evaluated against foodborne pathogens with inhibition ranges between 0.147 and 2.36 mg/mL. All evaluated pathogens were more sensitive to nanoemulsions, with reductions of up to four times in MIC compared with non-nanoemulsified versions. <i>E. coli</i> and <i>S</i>. Enteritidis were the most sensitive bacteria to the carvacrol nanoemulsion with MICs of 0.147 mg/mL. Concerning antibiofilm activity, nanoemulsions at concentrations up to four times lower than non-nanoemulsified versions showed inhibition of bacterial adhesion >67.2% and removal of adhered cells >57.7%. Overall, the observed effects indicate that droplet size reduction improved the bioactivity of OEO, carvacrol and thymol, suggesting that nanoemulsion-based delivery systems for natural compounds may be alternatives for food applications compared with free natural compounds. |
first_indexed | 2024-03-11T04:19:30Z |
format | Article |
id | doaj.art-bc35e95788cb4f24b6ae5dd7f4cf4fb8 |
institution | Directory Open Access Journal |
issn | 2304-8158 |
language | English |
last_indexed | 2024-03-11T04:19:30Z |
publishDate | 2023-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Foods |
spelling | doaj.art-bc35e95788cb4f24b6ae5dd7f4cf4fb82023-11-17T22:56:25ZengMDPI AGFoods2304-81582023-05-01129190110.3390/foods12091901Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified VersionsBruno Dutra da Silva0Denes Kaic Alves do Rosário1Luiz Torres Neto2Carini Aparecida Lelis3Carlos Adam Conte-Junior4Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, BrazilAnalytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, BrazilAnalytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, BrazilAnalytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, BrazilAnalytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, BrazilThis study aimed to develop nanoemulsions with a focus on improving the bioactivity of oregano essential oil (OEO), carvacrol and thymol for possible food applications. Nanoemulsions were prepared with acoustic cavitation using ultrasound. The nanodroplets had average diameters of 54.47, 81.66 and 84.07 nm for OEO, thymol and carvacrol, respectively. The main compound in OEO was carvacrol (74%), and the concentration in the nanoemulsions was 9.46 mg/mL for OEO and the isolated compounds. The effects of droplet size reduction on antioxidant, antibacterial and antibiofilm activity were evaluated. Regarding antioxidant activity, the nanoemulsions performed better at the same concentration, with inhibitions >45% of the DPPH radical and significant differences compared with their non-nanoemulsified versions (<i>p</i> < 0.05). The nanoemulsions’ minimum inhibitory concentration (MIC) and non-nanoemulsified compounds were evaluated against foodborne pathogens with inhibition ranges between 0.147 and 2.36 mg/mL. All evaluated pathogens were more sensitive to nanoemulsions, with reductions of up to four times in MIC compared with non-nanoemulsified versions. <i>E. coli</i> and <i>S</i>. Enteritidis were the most sensitive bacteria to the carvacrol nanoemulsion with MICs of 0.147 mg/mL. Concerning antibiofilm activity, nanoemulsions at concentrations up to four times lower than non-nanoemulsified versions showed inhibition of bacterial adhesion >67.2% and removal of adhered cells >57.7%. Overall, the observed effects indicate that droplet size reduction improved the bioactivity of OEO, carvacrol and thymol, suggesting that nanoemulsion-based delivery systems for natural compounds may be alternatives for food applications compared with free natural compounds.https://www.mdpi.com/2304-8158/12/9/1901<i>Origanum vulgare</i>essential oilcarvacrolthymolfoodborne illnessnanotechnology |
spellingShingle | Bruno Dutra da Silva Denes Kaic Alves do Rosário Luiz Torres Neto Carini Aparecida Lelis Carlos Adam Conte-Junior Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions Foods <i>Origanum vulgare</i> essential oil carvacrol thymol foodborne illness nanotechnology |
title | Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions |
title_full | Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions |
title_fullStr | Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions |
title_full_unstemmed | Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions |
title_short | Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions |
title_sort | antioxidant antibacterial and antibiofilm activity of nanoemulsion based natural compound delivery systems compared with non nanoemulsified versions |
topic | <i>Origanum vulgare</i> essential oil carvacrol thymol foodborne illness nanotechnology |
url | https://www.mdpi.com/2304-8158/12/9/1901 |
work_keys_str_mv | AT brunodutradasilva antioxidantantibacterialandantibiofilmactivityofnanoemulsionbasednaturalcompounddeliverysystemscomparedwithnonnanoemulsifiedversions AT deneskaicalvesdorosario antioxidantantibacterialandantibiofilmactivityofnanoemulsionbasednaturalcompounddeliverysystemscomparedwithnonnanoemulsifiedversions AT luiztorresneto antioxidantantibacterialandantibiofilmactivityofnanoemulsionbasednaturalcompounddeliverysystemscomparedwithnonnanoemulsifiedversions AT cariniaparecidalelis antioxidantantibacterialandantibiofilmactivityofnanoemulsionbasednaturalcompounddeliverysystemscomparedwithnonnanoemulsifiedversions AT carlosadamcontejunior antioxidantantibacterialandantibiofilmactivityofnanoemulsionbasednaturalcompounddeliverysystemscomparedwithnonnanoemulsifiedversions |