Stock market prediction using Altruistic Dragonfly Algorithm.
Stock market prediction is the process of determining the value of a company's shares and other financial assets in the future. This paper proposes a new model where Altruistic Dragonfly Algorithm (ADA) is combined with Least Squares Support Vector Machine (LS-SVM) for stock market prediction....
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2023-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0282002 |
Summary: | Stock market prediction is the process of determining the value of a company's shares and other financial assets in the future. This paper proposes a new model where Altruistic Dragonfly Algorithm (ADA) is combined with Least Squares Support Vector Machine (LS-SVM) for stock market prediction. ADA is a meta-heuristic algorithm which optimizes the parameters of LS-SVM to avoid local minima and overfitting, resulting in better prediction performance. Experiments have been performed on 12 datasets and the obtained results are compared with other popular meta-heuristic algorithms. The results show that the proposed model provides a better predictive ability and demonstrate the effectiveness of ADA in optimizing the parameters of LS-SVM. |
---|---|
ISSN: | 1932-6203 |