Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments

Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop f...

Full description

Bibliographic Details
Main Authors: Linus Pithan, Vladimir Starostin, David Mareček, Lukas Petersdorf, Constantin Völter, Valentin Munteanu, Maciej Jankowski, Oleg Konovalov, Alexander Gerlach, Alexander Hinderhofer, Bridget Murphy, Stefan Kowarik, Frank Schreiber
Format: Article
Language:English
Published: International Union of Crystallography 2023-11-01
Series:Journal of Synchrotron Radiation
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S160057752300749X
_version_ 1797361746199969792
author Linus Pithan
Vladimir Starostin
David Mareček
Lukas Petersdorf
Constantin Völter
Valentin Munteanu
Maciej Jankowski
Oleg Konovalov
Alexander Gerlach
Alexander Hinderhofer
Bridget Murphy
Stefan Kowarik
Frank Schreiber
author_facet Linus Pithan
Vladimir Starostin
David Mareček
Lukas Petersdorf
Constantin Völter
Valentin Munteanu
Maciej Jankowski
Oleg Konovalov
Alexander Gerlach
Alexander Hinderhofer
Bridget Murphy
Stefan Kowarik
Frank Schreiber
author_sort Linus Pithan
collection DOAJ
description Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.
first_indexed 2024-03-08T15:58:50Z
format Article
id doaj.art-bc42c255ce3747ecbedc3e9071da5fd3
institution Directory Open Access Journal
issn 1600-5775
language English
last_indexed 2024-03-08T15:58:50Z
publishDate 2023-11-01
publisher International Union of Crystallography
record_format Article
series Journal of Synchrotron Radiation
spelling doaj.art-bc42c255ce3747ecbedc3e9071da5fd32024-01-08T14:37:41ZengInternational Union of CrystallographyJournal of Synchrotron Radiation1600-57752023-11-013061064107510.1107/S160057752300749Xju5054Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environmentsLinus Pithan0Vladimir Starostin1David Mareček2Lukas Petersdorf3Constantin Völter4Valentin Munteanu5Maciej Jankowski6Oleg Konovalov7Alexander Gerlach8Alexander Hinderhofer9Bridget Murphy10Stefan Kowarik11Frank Schreiber12Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyInstitut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyPhysikalische und Theoretische Chemie, Universität Graz, Heinrichstrasse 28, 8010 Graz, AustriaInstitut für Experimentelle und Angewandte Physik, Universität Kiel, Leibnizstrasse 19, 24118 Kiel, GermanyInstitut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyInstitut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyESRF – The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, FranceESRF – The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, FranceInstitut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyInstitut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyInstitut für Experimentelle und Angewandte Physik, Universität Kiel, Leibnizstrasse 19, 24118 Kiel, GermanyPhysikalische und Theoretische Chemie, Universität Graz, Heinrichstrasse 28, 8010 Graz, AustriaInstitut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, GermanyRecently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.http://scripts.iucr.org/cgi-bin/paper?S160057752300749Xmachine learningreflectometryautonomous experimentsbeamline controlxrrclosed-loop control
spellingShingle Linus Pithan
Vladimir Starostin
David Mareček
Lukas Petersdorf
Constantin Völter
Valentin Munteanu
Maciej Jankowski
Oleg Konovalov
Alexander Gerlach
Alexander Hinderhofer
Bridget Murphy
Stefan Kowarik
Frank Schreiber
Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
Journal of Synchrotron Radiation
machine learning
reflectometry
autonomous experiments
beamline control
xrr
closed-loop control
title Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
title_full Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
title_fullStr Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
title_full_unstemmed Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
title_short Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments
title_sort closing the loop autonomous experiments enabled by machine learning based online data analysis in synchrotron beamline environments
topic machine learning
reflectometry
autonomous experiments
beamline control
xrr
closed-loop control
url http://scripts.iucr.org/cgi-bin/paper?S160057752300749X
work_keys_str_mv AT linuspithan closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT vladimirstarostin closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT davidmarecek closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT lukaspetersdorf closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT constantinvolter closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT valentinmunteanu closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT maciejjankowski closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT olegkonovalov closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT alexandergerlach closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT alexanderhinderhofer closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT bridgetmurphy closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT stefankowarik closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments
AT frankschreiber closingtheloopautonomousexperimentsenabledbymachinelearningbasedonlinedataanalysisinsynchrotronbeamlineenvironments