Synthesis and Characterization of New Copolymer Based Cinnamyl Methacrylate Monomer: Determination of Monomer Reactivity Ratio and Statistical Sequence

AbstractRadical-initiated copolymerization of Cinnamyl methacrylate (CMA) and Ethyl methacrylate (EMA) monomers were carried out at lower conversions (<10%) using 2,2’-azobisisobutyronitrile (AIBN) as initiator, in 1,4-dioxane at 60 °C and nitrogen atmosphere. Structure and composition of copolym...

Full description

Bibliographic Details
Main Author: Djahida Lerari
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2015-10-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000501008&tlng=en
Description
Summary:AbstractRadical-initiated copolymerization of Cinnamyl methacrylate (CMA) and Ethyl methacrylate (EMA) monomers were carried out at lower conversions (<10%) using 2,2’-azobisisobutyronitrile (AIBN) as initiator, in 1,4-dioxane at 60 °C and nitrogen atmosphere. Structure and composition of copolymers for wide range of monomer feed were determined by Fourier Transform Infrared (FTIR) and Ultra-violet (UV) spectroscopy analysis through recorded of analytical absorption bands for monomers units. Monomer reactivity for CMA (1)–EMA (2) pair were determined by the Finneman-Ross (F-R) and Kelen- Tudos (K-T) methods. They are r1= 0.135 and r2= 0.868 as determined by K-T method. Parameters Q1, e1 of CMA monomer were calculated according to Alfrey-Price model. A relatively high activity of EMA was observed as compared to CMA growing radical. This result can be explained by sterical hindrance caused by chemical structure of cinnamyl pendant group in chain growth reactions.
ISSN:1516-1439