Summary: | Mathematical concepts are aesthetic tools that are useful to create methods or solutions to real-world problems in theory and practice, and that sometimes contain symmetrical and asymmetrical structures due to the nature of the problems. In this study, we investigate whether the sequence spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="script">X</mi><mrow><mi>p</mi></mrow><mi>q</mi></msubsup><mo>,</mo></mrow></semantics></math></inline-formula> <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">X</mi><mo>∞</mo></msub></semantics></math></inline-formula>, which are constructed by <i>q</i>-Cesáro matrix, satisfy some of the further properties described with respect to the bounded linear operators on them. More specifically, we answer to the question: “Which of these spaces have the Approximation, Dunford-Pettis, Radon–Riesz and Hahn–Banach extension properties?”. Furthermore, we try to investigate some geometric properties such as rotundity and smootness of these spaces.
|