DNA-bridging by an archaeal histone variant via a unique tetramerisation interface

Abstract In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into ‘hypernucleosome’ particles of varying sizes with each dimer wrapping 30 bp of DNA. These are comp...

Full description

Bibliographic Details
Main Authors: Sapir Ofer, Fabian Blombach, Amanda M. Erkelens, Declan Barker, Zoja Soloviev, Samuel Schwab, Katherine Smollett, Dorota Matelska, Thomas Fouqueau, Nico van der Vis, Nicholas A. Kent, Konstantinos Thalassinos, Remus T. Dame, Finn Werner
Format: Article
Language:English
Published: Nature Portfolio 2023-09-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-023-05348-2
_version_ 1797557164833767424
author Sapir Ofer
Fabian Blombach
Amanda M. Erkelens
Declan Barker
Zoja Soloviev
Samuel Schwab
Katherine Smollett
Dorota Matelska
Thomas Fouqueau
Nico van der Vis
Nicholas A. Kent
Konstantinos Thalassinos
Remus T. Dame
Finn Werner
author_facet Sapir Ofer
Fabian Blombach
Amanda M. Erkelens
Declan Barker
Zoja Soloviev
Samuel Schwab
Katherine Smollett
Dorota Matelska
Thomas Fouqueau
Nico van der Vis
Nicholas A. Kent
Konstantinos Thalassinos
Remus T. Dame
Finn Werner
author_sort Sapir Ofer
collection DOAJ
description Abstract In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into ‘hypernucleosome’ particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.
first_indexed 2024-03-10T17:13:28Z
format Article
id doaj.art-bc8d288a4e11401aafac8f1923d0ab56
institution Directory Open Access Journal
issn 2399-3642
language English
last_indexed 2024-03-10T17:13:28Z
publishDate 2023-09-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj.art-bc8d288a4e11401aafac8f1923d0ab562023-11-20T10:35:25ZengNature PortfolioCommunications Biology2399-36422023-09-016111610.1038/s42003-023-05348-2DNA-bridging by an archaeal histone variant via a unique tetramerisation interfaceSapir Ofer0Fabian Blombach1Amanda M. Erkelens2Declan Barker3Zoja Soloviev4Samuel Schwab5Katherine Smollett6Dorota Matelska7Thomas Fouqueau8Nico van der Vis9Nicholas A. Kent10Konstantinos Thalassinos11Remus T. Dame12Finn Werner13Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingLeiden Institute of Chemistry, Leiden UniversityInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingLeiden Institute of Chemistry, Leiden UniversityInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingLeiden Institute of Chemistry, Leiden UniversitySchool of Biosciences, Cardiff University, Museum AvenueInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingLeiden Institute of Chemistry, Leiden UniversityInstitute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin BuildingAbstract In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into ‘hypernucleosome’ particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.https://doi.org/10.1038/s42003-023-05348-2
spellingShingle Sapir Ofer
Fabian Blombach
Amanda M. Erkelens
Declan Barker
Zoja Soloviev
Samuel Schwab
Katherine Smollett
Dorota Matelska
Thomas Fouqueau
Nico van der Vis
Nicholas A. Kent
Konstantinos Thalassinos
Remus T. Dame
Finn Werner
DNA-bridging by an archaeal histone variant via a unique tetramerisation interface
Communications Biology
title DNA-bridging by an archaeal histone variant via a unique tetramerisation interface
title_full DNA-bridging by an archaeal histone variant via a unique tetramerisation interface
title_fullStr DNA-bridging by an archaeal histone variant via a unique tetramerisation interface
title_full_unstemmed DNA-bridging by an archaeal histone variant via a unique tetramerisation interface
title_short DNA-bridging by an archaeal histone variant via a unique tetramerisation interface
title_sort dna bridging by an archaeal histone variant via a unique tetramerisation interface
url https://doi.org/10.1038/s42003-023-05348-2
work_keys_str_mv AT sapirofer dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT fabianblombach dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT amandamerkelens dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT declanbarker dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT zojasoloviev dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT samuelschwab dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT katherinesmollett dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT dorotamatelska dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT thomasfouqueau dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT nicovandervis dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT nicholasakent dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT konstantinosthalassinos dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT remustdame dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface
AT finnwerner dnabridgingbyanarchaealhistonevariantviaauniquetetramerisationinterface