Summary: | Alterations in glycosphingolipid metabolism have been linked to the pathophysiological mechanisms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Accordingly, administration of GM1, a sialic acid‐containing glycosphingolipid, is protective against neuronal damage and supports neuronal homeostasis, with these effects mediated by its bioactive component, the oligosaccharide head (GM1‐OS). Here, we add new evidence to the therapeutic efficacy of GM1 in ALS: Its administration to WT and SOD1G93A motor neurons affected by glutamate‐induced excitotoxicity significantly increased neuronal survival and preserved neurite networks, counteracting intracellular protein accumulation and mitochondria impairment. Importantly, the GM1‐OS faithfully replicates GM1 activity, emphasizing that even in ALS the protective function of GM1 strictly depends on its pentasaccharide.
|