Fréchet Analysis and Sensitivity Relations for the Optimal Time Problem
In this paper, we first present formulas for computing the Fréchet subdifferentials and Fréchet singular subdifferentials of the minimal time function <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> for a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9026975/ |
Summary: | In this paper, we first present formulas for computing the Fréchet subdifferentials and Fréchet singular subdifferentials of the minimal time function <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> for a differential inclusion in <inline-formula> <tex-math notation="LaTeX">$\mathbb {R}^{n}$ </tex-math></inline-formula> with a general target <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula>. These formulas are characterized in terms of Fréchet normal cones to a sub-level set of <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> and a level set of the minimized Hamiltonian associated with the differential inclusion. Our results extend, improve and complement to existing results. An application to sensitivity analysis for a class of time optimal control problems is also given. |
---|---|
ISSN: | 2169-3536 |