Fréchet Analysis and Sensitivity Relations for the Optimal Time Problem

In this paper, we first present formulas for computing the Fr&#x00E9;chet subdifferentials and Fr&#x00E9;chet singular subdifferentials of the minimal time function <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> for a...

Full description

Bibliographic Details
Main Authors: Luong V. Nguyen, Nguyen T. Thu
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9026975/
_version_ 1811209800871051264
author Luong V. Nguyen
Nguyen T. Thu
author_facet Luong V. Nguyen
Nguyen T. Thu
author_sort Luong V. Nguyen
collection DOAJ
description In this paper, we first present formulas for computing the Fr&#x00E9;chet subdifferentials and Fr&#x00E9;chet singular subdifferentials of the minimal time function <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> for a differential inclusion in <inline-formula> <tex-math notation="LaTeX">$\mathbb {R}^{n}$ </tex-math></inline-formula> with a general target <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula>. These formulas are characterized in terms of Fr&#x00E9;chet normal cones to a sub-level set of <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> and a level set of the minimized Hamiltonian associated with the differential inclusion. Our results extend, improve and complement to existing results. An application to sensitivity analysis for a class of time optimal control problems is also given.
first_indexed 2024-04-12T04:45:02Z
format Article
id doaj.art-bc9d03ea2ca442209e67f94480daafcc
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-12T04:45:02Z
publishDate 2020-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-bc9d03ea2ca442209e67f94480daafcc2022-12-22T03:47:31ZengIEEEIEEE Access2169-35362020-01-018465964660410.1109/ACCESS.2020.29790619026975Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time ProblemLuong V. Nguyen0https://orcid.org/0000-0002-5784-5552Nguyen T. Thu1Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, VietnamFaculty of Natural Sciences, Hong Duc University, Thanh Hoa, VietnamIn this paper, we first present formulas for computing the Fr&#x00E9;chet subdifferentials and Fr&#x00E9;chet singular subdifferentials of the minimal time function <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> for a differential inclusion in <inline-formula> <tex-math notation="LaTeX">$\mathbb {R}^{n}$ </tex-math></inline-formula> with a general target <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula>. These formulas are characterized in terms of Fr&#x00E9;chet normal cones to a sub-level set of <inline-formula> <tex-math notation="LaTeX">$\mathscr {T}$ </tex-math></inline-formula> and a level set of the minimized Hamiltonian associated with the differential inclusion. Our results extend, improve and complement to existing results. An application to sensitivity analysis for a class of time optimal control problems is also given.https://ieeexplore.ieee.org/document/9026975/Differential inclusionsFréchet subdifferentialsminimum time functionsensitivity relations
spellingShingle Luong V. Nguyen
Nguyen T. Thu
Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time Problem
IEEE Access
Differential inclusions
Fréchet subdifferentials
minimum time function
sensitivity relations
title Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time Problem
title_full Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time Problem
title_fullStr Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time Problem
title_full_unstemmed Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time Problem
title_short Fr&#x00E9;chet Analysis and Sensitivity Relations for the Optimal Time Problem
title_sort fr x00e9 chet analysis and sensitivity relations for the optimal time problem
topic Differential inclusions
Fréchet subdifferentials
minimum time function
sensitivity relations
url https://ieeexplore.ieee.org/document/9026975/
work_keys_str_mv AT luongvnguyen frx00e9chetanalysisandsensitivityrelationsfortheoptimaltimeproblem
AT nguyentthu frx00e9chetanalysisandsensitivityrelationsfortheoptimaltimeproblem