Complexity-Entropy Maps as a Tool for the Characterization of the Clinical Electrophysiological Evolution of Patients under Pharmacological Treatment with Psychotropic Drugs

In the clinical electrophysiological practice, reading and comparing electroencephalographic (EEG) recordings are sometimes insufficient and take too much time. Tools coming from the information theory or nonlinear systems theory such as entropy and complexity have been presented as an alternative t...

Full description

Bibliographic Details
Main Authors: Juan M. Diaz, Diego M. Mateos, Carina Boyallian
Format: Article
Language:English
Published: MDPI AG 2017-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/19/10/540
Description
Summary:In the clinical electrophysiological practice, reading and comparing electroencephalographic (EEG) recordings are sometimes insufficient and take too much time. Tools coming from the information theory or nonlinear systems theory such as entropy and complexity have been presented as an alternative to address this problem. In this work, we introduce a novel method—the permutation Lempel–Ziv Complexity vs. Permutation Entropy map. We apply this method to the EEGs of two patients with specific diagnosed pathologies during respective follow up processes of pharmacological changes in order to detect alterations that are not evident with the usual inspection method. The method allows for comparing between different states of the patients’ treatment, with a healthy control group, given global information about the signal, supplementing the traditional method of visual inspection of EEG.
ISSN:1099-4300