NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline

Abstract Background Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means...

Full description

Bibliographic Details
Main Authors: Ryan O. Schenck, Eszter Lakatos, Chandler Gatenbee, Trevor A. Graham, Alexander R.A. Anderson
Format: Article
Language:English
Published: BMC 2019-05-01
Series:BMC Bioinformatics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12859-019-2876-4
_version_ 1818442265043927040
author Ryan O. Schenck
Eszter Lakatos
Chandler Gatenbee
Trevor A. Graham
Alexander R.A. Anderson
author_facet Ryan O. Schenck
Eszter Lakatos
Chandler Gatenbee
Trevor A. Graham
Alexander R.A. Anderson
author_sort Ryan O. Schenck
collection DOAJ
description Abstract Background Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means of predicting and assessing neoantigens from tumor variants that may stimulate immune response. Results Here we offer NeoPredPipe (Neoantigen Prediction Pipeline) as a contiguous means of predicting putative neoantigens and their corresponding recognition potentials for both single and multi-region tumor samples. NeoPredPipe is able to quickly provide summary information for researchers, and clinicians alike, on predicted neoantigen burdens while providing high-level insights into tumor heterogeneity given somatic mutation calls and, optionally, patient HLA haplotypes. Given an example dataset we show how NeoPredPipe is able to rapidly provide insights into neoantigen heterogeneity, burden, and immune stimulation potential. Conclusions Through the integration of widely adopted tools for neoantigen discovery NeoPredPipe offers a contiguous means of processing single and multi-region sequence data. NeoPredPipe is user-friendly and adaptable for high-throughput performance. NeoPredPipe is freely available at https://github.com/MathOnco/NeoPredPipe.
first_indexed 2024-12-14T18:41:24Z
format Article
id doaj.art-bcbb3fae5e0a431dbdd5f4148ee443fb
institution Directory Open Access Journal
issn 1471-2105
language English
last_indexed 2024-12-14T18:41:24Z
publishDate 2019-05-01
publisher BMC
record_format Article
series BMC Bioinformatics
spelling doaj.art-bcbb3fae5e0a431dbdd5f4148ee443fb2022-12-21T22:51:30ZengBMCBMC Bioinformatics1471-21052019-05-012011610.1186/s12859-019-2876-4NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipelineRyan O. Schenck0Eszter Lakatos1Chandler Gatenbee2Trevor A. Graham3Alexander R.A. Anderson4Integrated Mathematical Oncology, Moffitt Cancer CenterEvolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of LondonIntegrated Mathematical Oncology, Moffitt Cancer CenterEvolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of LondonIntegrated Mathematical Oncology, Moffitt Cancer CenterAbstract Background Next generation sequencing has yielded an unparalleled means of quickly determining the molecular make-up of patient tumors. In conjunction with emerging, effective immunotherapeutics for a number of cancers, this rapid data generation necessitates a paired high-throughput means of predicting and assessing neoantigens from tumor variants that may stimulate immune response. Results Here we offer NeoPredPipe (Neoantigen Prediction Pipeline) as a contiguous means of predicting putative neoantigens and their corresponding recognition potentials for both single and multi-region tumor samples. NeoPredPipe is able to quickly provide summary information for researchers, and clinicians alike, on predicted neoantigen burdens while providing high-level insights into tumor heterogeneity given somatic mutation calls and, optionally, patient HLA haplotypes. Given an example dataset we show how NeoPredPipe is able to rapidly provide insights into neoantigen heterogeneity, burden, and immune stimulation potential. Conclusions Through the integration of widely adopted tools for neoantigen discovery NeoPredPipe offers a contiguous means of processing single and multi-region sequence data. NeoPredPipe is user-friendly and adaptable for high-throughput performance. NeoPredPipe is freely available at https://github.com/MathOnco/NeoPredPipe.http://link.springer.com/article/10.1186/s12859-019-2876-4NeoantigensCancerEvolutionHeterogeneityNext-generation sequencing
spellingShingle Ryan O. Schenck
Eszter Lakatos
Chandler Gatenbee
Trevor A. Graham
Alexander R.A. Anderson
NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
BMC Bioinformatics
Neoantigens
Cancer
Evolution
Heterogeneity
Next-generation sequencing
title NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
title_full NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
title_fullStr NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
title_full_unstemmed NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
title_short NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline
title_sort neopredpipe high throughput neoantigen prediction and recognition potential pipeline
topic Neoantigens
Cancer
Evolution
Heterogeneity
Next-generation sequencing
url http://link.springer.com/article/10.1186/s12859-019-2876-4
work_keys_str_mv AT ryanoschenck neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline
AT eszterlakatos neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline
AT chandlergatenbee neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline
AT trevoragraham neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline
AT alexanderraanderson neopredpipehighthroughputneoantigenpredictionandrecognitionpotentialpipeline