Evaluation of Soya Bio-Diesel as a Gas Turbine Fuel

In the recent past, the crude oil prices have increased immensely as the fossil fuels are depleting, biodiesel has emerged as an alternative fuel for the petroleum. In this context the use of bio-diesel in the gas turbine seems a solution for power generation problems and their environmental concern...

Full description

Bibliographic Details
Main Authors: K.K. Gupta, A. Rehman, R.M. Sarviya
Format: Article
Language:English
Published: Babol Noshirvani University of Technology 2010-07-01
Series:Iranica Journal of Energy and Environment
Subjects:
Online Access:http://idosi.org/ijee/1(3)2010/8.pdf
Description
Summary:In the recent past, the crude oil prices have increased immensely as the fossil fuels are depleting, biodiesel has emerged as an alternative fuel for the petroleum. In this context the use of bio-diesel in the gas turbine seems a solution for power generation problems and their environmental concerns. Vegetable oils, due to their agricultural origin, are able to reduce net carbon dioxide emissions to the atmosphere. However, there are several operational and durability problems which may arise in using straight vegetable oils, which are because of their higher viscosity and low volatility compared to mineral diesel fuel. Bio-fuels, an alternative fuels are having environmental benefit as; they are made from renewable sources. It can be blended in any proportion with mineral Diesel. Many performance and emission tests are being carried out in reciprocating diesel engines that use bio fuel but there are very few tests has been done on gas turbine engines. The gas turbine combustion is steady flame combustion. This feature creates the wide range for the different alternative fuels for clean combustion in the gas turbine, such as natural gas, petroleum distillates, pyrolysis wood gas, biogas of methanisation, bio-diesel etc. The present work is an analysis of the Soya bio-diesel productionprocess i.e. trans-esterification, the different parameters affecting on trans-esterification. The different physical and chemical properties of this bio-diesel and diesel has been determined and compared to establish the suitability of the bio-diesel in the gas turbine. An analysis on High Performance Liquid Chromatography (HPLC) has been done to find out the composition of the different fatty acid esters. The effect of these fatty acids onthe property of the bio-diesel has also been explained such as viscosity, heat of combustion, cetane No, cold flow properties, lubricity and oxidative stability etc. This will also help us to select best suited bio-diesel for the gas turbine.
ISSN:2079-2115
2079-2123