Instantaneous Quantum Description of Photonic Wavefronts and Applications

Three physical elements are missing from the conventional formalism of quantum photonics: (1) the quantum Rayleigh spontaneous and stimulated emissions; (2) the unavoidable parametric amplification; and (3) the mixed time-frequency spectral structure of a photonic field which specifies its duration...

Full description

Bibliographic Details
Main Author: Andre Vatarescu
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Quantum Beam Science
Subjects:
Online Access:https://www.mdpi.com/2412-382X/6/4/29
Description
Summary:Three physical elements are missing from the conventional formalism of quantum photonics: (1) the quantum Rayleigh spontaneous and stimulated emissions; (2) the unavoidable parametric amplification; and (3) the mixed time-frequency spectral structure of a photonic field which specifies its duration or spatial extent. As a single photon enters a dielectric medium, the quantum Rayleigh scattering prevents it from propagating in a straight-line, thereby destroying any possible entanglement. A pure dynamic and coherent state composed of two consecutive number states, delivers the correct expectation values for the number of photons carried by a photonic wave front, its complex optical field, and phase quadratures. The intrinsic longitudinal and lateral field profiles associated with a group of photons for any instantaneous number of photons are independent of the source. These photonic properties enable a step-by-step analysis of the correlation functions characterizing counting of coincident numbers of photons or intensities with unity visibility interference, spanning the classical and quantum optic regimes.
ISSN:2412-382X