Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry

<p>Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below <span class="inline-formula">∼3</span> <span class=&...

Full description

Bibliographic Details
Main Authors: O. Appel, F. Köllner, A. Dragoneas, A. Hünig, S. Molleker, H. Schlager, C. Mahnke, R. Weigel, M. Port, C. Schulz, F. Drewnick, B. Vogel, F. Stroh, S. Borrmann
Format: Article
Language:English
Published: Copernicus Publications 2022-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/13607/2022/acp-22-13607-2022.pdf
_version_ 1811340100523524096
author O. Appel
O. Appel
F. Köllner
A. Dragoneas
A. Dragoneas
A. Hünig
A. Hünig
S. Molleker
H. Schlager
C. Mahnke
C. Mahnke
R. Weigel
M. Port
M. Port
C. Schulz
C. Schulz
F. Drewnick
B. Vogel
F. Stroh
S. Borrmann
S. Borrmann
author_facet O. Appel
O. Appel
F. Köllner
A. Dragoneas
A. Dragoneas
A. Hünig
A. Hünig
S. Molleker
H. Schlager
C. Mahnke
C. Mahnke
R. Weigel
M. Port
M. Port
C. Schulz
C. Schulz
F. Drewnick
B. Vogel
F. Stroh
S. Borrmann
S. Borrmann
author_sort O. Appel
collection DOAJ
description <p>Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below <span class="inline-formula">∼3</span> <span class="inline-formula">µm</span>. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e., a modified Aerodyne AMS), aboard the high-altitude research aircraft M-55 <i>Geophysica</i>. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better Climate predictions) over Nepal, India, Bangladesh, and the Bay of Bengal, covering altitudes up to 20 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">km</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">a</mi><mo>.</mo><mi mathvariant="normal">s</mi><mo>.</mo><mi mathvariant="normal">l</mi><mo>.</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1131ba4fc5d7a8797866fa65a0408576"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13607-2022-ie00001.svg" width="41pt" height="10pt" src="acp-22-13607-2022-ie00001.png"/></svg:svg></span></span> For particles with diameters between 10 <span class="inline-formula">nm</span> and <span class="inline-formula">∼3</span> <span class="inline-formula">µm</span>, the vertical profiles of aerosol number densities from the eight research flights show significant enhancements in the altitude range of the ATAL. We observed enhancements in the mass concentrations of particulate nitrate, ammonium, and organics in a similar altitude range between approximately 13 and 18 <span class="inline-formula">km</span> (corresponding to 360 and 410 <span class="inline-formula">K</span> potential temperature). By means of the two aerosol mass spectrometry techniques, we show that the particles in the ATAL mainly consist of ammonium nitrate (AN) and organics. The single-particle analysis from laser desorption and ionization mass spectrometry revealed that a significant particle fraction (up to 70 % of all analyzed particles by number) within the ATAL results from the conversion of inorganic and organic gas-phase precursors, rather than from the uplift of primary particles from below. This can be inferred from the fact that the majority of the particles encountered in the ATAL consisted solely of secondary substances, namely an internal mixture of nitrate, ammonium, sulfate, and organic matter. These particles are externally mixed with particles containing primary components as well. The single-particle analysis suggests that the organic matter within the ATAL and in the lower stratosphere (even above 420 <span class="inline-formula">K</span>) can partly be identified as organosulfates (OS), in particular glycolic acid sulfate, which are known as components indicative for secondary organic aerosol (SOA) formation. Additionally, the secondary particles are smaller in size compared to those containing primary components (mainly potassium, metals, and elemental carbon). The analysis of particulate organics with the thermal desorption method shows that the degree of oxidation for particles observed in the ATAL is consistent with expectations about secondary organics that were subject to photochemical processing and aging. We found that organic aerosol was less oxidized in lower regions of the ATAL (<span class="inline-formula">&lt;380</span> <span class="inline-formula">K</span>) compared to higher altitudes (here 390–420 <span class="inline-formula">K</span>). These results suggest that particles formed in the lower ATAL are uplifted by prevailing diabatic heating processes and thereby subject to extensive oxidative aging. Thus, our observations are consistent with the concept of precursor gases being emitted from regional ground sources, subjected to rapid convective uplift, and followed by secondary particle formation and growth in the upper troposphere within the confinement of the Asian monsoon anticyclone (AMA). As a consequence, the chemical composition of these particles largely differs from the aerosol in the lower stratospheric background and the Junge layer.</p>
first_indexed 2024-04-13T18:37:23Z
format Article
id doaj.art-bce3a050353e424d937e130ac7ea0d92
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T18:37:23Z
publishDate 2022-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-bce3a050353e424d937e130ac7ea0d922022-12-22T02:34:51ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-10-0122136071363010.5194/acp-22-13607-2022Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometryO. Appel0O. Appel1F. Köllner2A. Dragoneas3A. Dragoneas4A. Hünig5A. Hünig6S. Molleker7H. Schlager8C. Mahnke9C. Mahnke10R. Weigel11M. Port12M. Port13C. Schulz14C. Schulz15F. Drewnick16B. Vogel17F. Stroh18S. Borrmann19S. Borrmann20Max Planck Institute for Chemistry, Mainz, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, GermanyMax Planck Institute for Chemistry, Mainz, GermanyDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyMax Planck Institute for Chemistry, Mainz, Germanynow at: Institute of Energy and Climate Research (IEK-8), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germanynow at: Montessori Zentrum Hofheim, GermanyMax Planck Institute for Chemistry, Mainz, Germanynow at: Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, GermanyMax Planck Institute for Chemistry, Mainz, GermanyInstitute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich, Jülich, GermanyInstitute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich, Jülich, GermanyMax Planck Institute for Chemistry, Mainz, GermanyInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany<p>Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below <span class="inline-formula">∼3</span> <span class="inline-formula">µm</span>. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e., a modified Aerodyne AMS), aboard the high-altitude research aircraft M-55 <i>Geophysica</i>. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better Climate predictions) over Nepal, India, Bangladesh, and the Bay of Bengal, covering altitudes up to 20 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">km</mi><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">a</mi><mo>.</mo><mi mathvariant="normal">s</mi><mo>.</mo><mi mathvariant="normal">l</mi><mo>.</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="41pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1131ba4fc5d7a8797866fa65a0408576"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13607-2022-ie00001.svg" width="41pt" height="10pt" src="acp-22-13607-2022-ie00001.png"/></svg:svg></span></span> For particles with diameters between 10 <span class="inline-formula">nm</span> and <span class="inline-formula">∼3</span> <span class="inline-formula">µm</span>, the vertical profiles of aerosol number densities from the eight research flights show significant enhancements in the altitude range of the ATAL. We observed enhancements in the mass concentrations of particulate nitrate, ammonium, and organics in a similar altitude range between approximately 13 and 18 <span class="inline-formula">km</span> (corresponding to 360 and 410 <span class="inline-formula">K</span> potential temperature). By means of the two aerosol mass spectrometry techniques, we show that the particles in the ATAL mainly consist of ammonium nitrate (AN) and organics. The single-particle analysis from laser desorption and ionization mass spectrometry revealed that a significant particle fraction (up to 70 % of all analyzed particles by number) within the ATAL results from the conversion of inorganic and organic gas-phase precursors, rather than from the uplift of primary particles from below. This can be inferred from the fact that the majority of the particles encountered in the ATAL consisted solely of secondary substances, namely an internal mixture of nitrate, ammonium, sulfate, and organic matter. These particles are externally mixed with particles containing primary components as well. The single-particle analysis suggests that the organic matter within the ATAL and in the lower stratosphere (even above 420 <span class="inline-formula">K</span>) can partly be identified as organosulfates (OS), in particular glycolic acid sulfate, which are known as components indicative for secondary organic aerosol (SOA) formation. Additionally, the secondary particles are smaller in size compared to those containing primary components (mainly potassium, metals, and elemental carbon). The analysis of particulate organics with the thermal desorption method shows that the degree of oxidation for particles observed in the ATAL is consistent with expectations about secondary organics that were subject to photochemical processing and aging. We found that organic aerosol was less oxidized in lower regions of the ATAL (<span class="inline-formula">&lt;380</span> <span class="inline-formula">K</span>) compared to higher altitudes (here 390–420 <span class="inline-formula">K</span>). These results suggest that particles formed in the lower ATAL are uplifted by prevailing diabatic heating processes and thereby subject to extensive oxidative aging. Thus, our observations are consistent with the concept of precursor gases being emitted from regional ground sources, subjected to rapid convective uplift, and followed by secondary particle formation and growth in the upper troposphere within the confinement of the Asian monsoon anticyclone (AMA). As a consequence, the chemical composition of these particles largely differs from the aerosol in the lower stratospheric background and the Junge layer.</p>https://acp.copernicus.org/articles/22/13607/2022/acp-22-13607-2022.pdf
spellingShingle O. Appel
O. Appel
F. Köllner
A. Dragoneas
A. Dragoneas
A. Hünig
A. Hünig
S. Molleker
H. Schlager
C. Mahnke
C. Mahnke
R. Weigel
M. Port
M. Port
C. Schulz
C. Schulz
F. Drewnick
B. Vogel
F. Stroh
S. Borrmann
S. Borrmann
Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry
Atmospheric Chemistry and Physics
title Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry
title_full Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry
title_fullStr Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry
title_full_unstemmed Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry
title_short Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry
title_sort chemical analysis of the asian tropopause aerosol layer atal with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass spectrometry
url https://acp.copernicus.org/articles/22/13607/2022/acp-22-13607-2022.pdf
work_keys_str_mv AT oappel chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT oappel chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT fkollner chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT adragoneas chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT adragoneas chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT ahunig chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT ahunig chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT smolleker chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT hschlager chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT cmahnke chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT cmahnke chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT rweigel chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT mport chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT mport chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT cschulz chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT cschulz chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT fdrewnick chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT bvogel chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT fstroh chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT sborrmann chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry
AT sborrmann chemicalanalysisoftheasiantropopauseaerosollayeratalwithemphasisonsecondaryaerosolparticlesusingaircraftbasedinsituaerosolmassspectrometry