Benchmarking of cell type deconvolution pipelines for transcriptomics data

Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.

Bibliographic Details
Main Authors: Francisco Avila Cobos, José Alquicira-Hernandez, Joseph E. Powell, Pieter Mestdagh, Katleen De Preter
Format: Article
Language:English
Published: Nature Portfolio 2020-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-19015-1
_version_ 1818423138762883072
author Francisco Avila Cobos
José Alquicira-Hernandez
Joseph E. Powell
Pieter Mestdagh
Katleen De Preter
author_facet Francisco Avila Cobos
José Alquicira-Hernandez
Joseph E. Powell
Pieter Mestdagh
Katleen De Preter
author_sort Francisco Avila Cobos
collection DOAJ
description Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.
first_indexed 2024-12-14T13:37:23Z
format Article
id doaj.art-bce8d3da8b7e49c7b03795b732b6ebd6
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-14T13:37:23Z
publishDate 2020-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-bce8d3da8b7e49c7b03795b732b6ebd62022-12-21T22:59:33ZengNature PortfolioNature Communications2041-17232020-11-0111111410.1038/s41467-020-19015-1Benchmarking of cell type deconvolution pipelines for transcriptomics dataFrancisco Avila Cobos0José Alquicira-Hernandez1Joseph E. Powell2Pieter Mestdagh3Katleen De Preter4Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityGarvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical ResearchGarvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical ResearchCenter for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityCenter for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent UniversityInferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.https://doi.org/10.1038/s41467-020-19015-1
spellingShingle Francisco Avila Cobos
José Alquicira-Hernandez
Joseph E. Powell
Pieter Mestdagh
Katleen De Preter
Benchmarking of cell type deconvolution pipelines for transcriptomics data
Nature Communications
title Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_full Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_fullStr Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_full_unstemmed Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_short Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_sort benchmarking of cell type deconvolution pipelines for transcriptomics data
url https://doi.org/10.1038/s41467-020-19015-1
work_keys_str_mv AT franciscoavilacobos benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT josealquicirahernandez benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT josephepowell benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT pietermestdagh benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT katleendepreter benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata